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Abstract

We propose to employ the anisotropic Nf = 2+1 dynamical clover configurations
for a study of the baryon resonance spectrum for the baryons that can be constructed
from u/d and s quarks. We will work at two values of the pion mass, 485 and
380 MeV, and compute the spectrum on 243 × 128 lattices at as = 0.1 fm, with a
renormalized anisotropy of three; a flavor SU(3)-symmetric computation on Nf = 3
lattices at the strange-quark mass, in a region where the resonances are stable, will
also be performed. An important goal of the proposal is a demonstration that we can
delineate single- and multi-particle states. Thus at the larger of the two pion masses,
we will also perform the calculation on a 323× 128 lattice. For the computation and
analysis of the valence propagators for the resonance spectrum, we request 560,000
Processor-Hours on the JLab “6n” cluster, or its equivalent.

∗email: dgr@jlab.org
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1 Physics Goals

In order to really understand QCD and hence test whether it is the complete theory of
the strong interaction, we must know the spectrum of mesons and baryons that it implies
and test those spectra against high quality experimental measurements. The complete
combined analysis of available experimental data on the photoproduction of nucleon res-
onances is the 2009 milestone in Hadronic Physics (HP), and the measurement of the
electromagnetic properties of the low-lying baryons is an HP 2012 milestone.

Given the current intense experimental efforts in hadron spectroscopy, the need to
predict and understand the hadron spectrum from first principles calculations in QCD
is clear. Hence, our goal in this proposal is to embark on a comprehensive study of the
baryon spectrum, employing the anisotropic clover gauge configuration currently being
generated. This proposal is above the threshold for a Class-A proposal. Given that an
important strategic goal of USQCD is to employ lattice QCD calculations to address the
key questions in hadronic physics, we believe this proposal satisfies one of the two criteria
for a Class-A proposal. Furthermore, we propose to save the point-source propagators that
will be of use in numerous projects.

1.1 Resonances and Lattice QCD

A comprehensive picture of resonances requires that we go beyond a knowledge of the
ground state mass in each channel, and obtain the masses of the lowest few states of
a given quantum number. This we can accomplish through the use of the variational
method[1, 2]. Rather than measuring a single correlator C(t), we determine a matrix of
correlators

Cij(t) =
∑

~x

〈Oi(~x, t)O†
j(~0, 0)〉,

where {Oi; i = 1, . . . , N} are a basis of interpolating operators with given quantum num-
bers. We then solve the generalized eigenvalue equation

C(t)u = λ(t, t0)C(t0)u

to obtain a set of real (ordered) eigenvalues λn(t, t0), where λ0 ≥ λ1 ≥ · · · ≥ λN−1. At
large Euclidean times, these eigenvalues then delineate between the different masses

λn(t, t0) −→ e−Mn(t−t0)
[
1 + O(e−∆Mn(t−t0))

]
. (1)

where ∆Mn = min{| Mn −Mi |: i 6= n}. The eigenvectors u are orthogonal with metric
C(t0), and a knowledge of the eigenvectors can yield information about the structure of
the states. A variation of this method is to fix the basis at some reference time slice t1,
and then look at the evolution of these operators. We try both methods; for an N × N
matrix the extent to which this second method is effective depends on the degree to which
the N ×N matrix is indeed dominated by only N states.

Crucial to the application of variational techniques is the construction of a basis of
operators that have a good overlap with the lowest-lying states of interest. To facilitate
rigorous spin identification, these operators should have the property that they respect the
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Figure 1: The spatial arrangements of the extended three-quark baryon operators. Smeared
quark-fields are shown by solid circles, line segments indicate gauge-covariant displace-
ments, and each hollow circle indicates the location of a Levi-Civita color coupling. For
simplicity, all displacements have the same length in an operator.
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Figure 2: The figure shows the masses, in physical units, for the lowest-lying states ex-
tracted from single-particle fits to the smeared-source, point-sink data, as discussed in the
text. The computations were performed on the 203 × 64 lattices generated by the MILC
collaboration at a = 0.124 fm, with the u/d and s DWF valence propagators calculated at
a mass corresponding to the Asqtad Goldstone boson.

symmetries of the lattice, rather than being a mere discretization of continuum interpolat-
ing operators. The LHP Collaboration has developed techniques to enable the construction
of baryon interpolating operators[3, 4]; the extension to mesons is straightforward, and has
been undertaken. The use of smeared quark and gauge fields is crucial in constructing good
operators.

All of our hadronic operators are constructed using gauge-covariantly displaced smeared
quark fields as the building blocks. The displacements are along the six directions allowed
by the spatial cubic lattice. A displaced quark and a displaced antiquark field can be joined
together to form a gauge-invariant meson operator, while three displaced quark fields can
be connected to form a gauge-invariant baryon operator. The specific orientations we
employ are shown in Figure 1. The group-theoretical projection method is used to com-
bine the different orientations of these elemental operators to form operators transforming
irreducibly under the cubic group. The pattern of degeneracies in the approach to the
continuum limit allows us to identify the continuum spins J of the states we extract.
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1.2 Progress so far

An illustration of the applicability of our group-theoretic operator construction has been
to the analysis of the hadron spectrum by the LHP Collaboration, using DWF propagators
for the valence quarks on MILC Asqtad gauge configurations. All possible operators in
each of the G1g/u and Hg/u irreducible representations that can be constructed with the
computed, smeared-source, valence quark propagators at the u/d and s quark masses were
determined; note that, with a quasi-local quark source, the G2g/u irrep is not accessible
demonstrating the need for the displaced propagators of this proposal. The spectrum of
the lowest-lying states is shown in Figure 2; we see the emergence of the SU(3) flavour
symmetry as the u/d-quark masses approach those of the s quark, and the SU(3) calculation
provides a valuable benchamrk. We were unable to resolve excited states, both because of
DWF non-localities manifiest in the correlators, and because the use of an isotropic lattice
precluded the resolution of the higher eigenvalues.

We have recently completed exploratory studies on small 123×48 quenched anisotropic
Wilson lattices, with as ' 0.1 fm, ξ ' 3 and mπ = 675 MeV, focusing on the nucleon
I = 1/2 sector. The spectrum is shown as the left-hand panel in Figure 3, and demonstrates
our ability to isolate up to nine energy eigenvalues from the correlation functions[5]. The
right-hand panel shows the experimental spectrum, but with the states assigned to their
corresponding lattice irreps.. Even in this quenched calculation, at unphysical pion masses,
there are tantalizing suggestions of the existence of a band of negative-parity states well
separated from the higher excitations, as observed experimentally. A related computation,
employing a smaller basis of operators, has demonstrated that the crucial need for such an
analysis in order to correctly identify the spins of the states[6].

This study has important implications. Firstly, it demonstrates the ability to extract
many energy eigenvalues in an anisotropic lattice calculation. Secondly, in order to perform
this analysis, the extremely large basis of operators was first “pruned” to yield the basis of
sixteen operators used in the variational analysis; this procedure was performed for each of
G1g/u, G2g/u and Hg/u. Therefore, an important observation is that the sixteen “important”
operators included representatives of the single-site, doubly-displaced-I, doubly-displaced-L
and triply-displaced-T configurations. Thus we conclude that a reliable variational method
requires operators from all of these classes.

We are extending this study to full QCD, using the Nf = 2 anisotropic Wilson gauge
configurations that have been generated under the 2006 SciDAC allocation, at as ' 0.1fm
and as/at = 3. Configurations have been generated on 163× 64 lattices at mπ ' 700 MeV,
and on 163 × 64 and 243 × 64 lattices at mπ ' 460 MeV. An analysis at the heavier
pion mass will allow a straightforward comparison with the quenched results above, but
at the lighter pion mass we are entering a regime in which we might expect the presence
of multi-hadron states to contribute, for example in the N1/2−. The first glimpses of our
results at mπ = 460 MeV on the smaller of the lattices is revealed in Figure 4, where we
show the results of a variational analysis using the same basis of operators as that used
in the quenched study. Hints of the presence of multiparticle contributions are seen in the
fall-off of the principal effective masses.
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Figure 3: The left-hand panel shows the spectrum of energies, in lattice units, obtained
in the quenched approximation to QCD on an anisotropic lattice with temporal lattice
spacing at ' 6 GeV, and mπ ' 700 MeV. The right-hand model shows the experimentally
measured spectrum, assigned to the irreducible representations of the cubic group.
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Figure 4: The figure shows the lowest four levels in the G1g channel obtained on the Nf = 2
Wilson fermion gauge configurations on a 163× 64 lattices at mπ ' 460. The points in red
correspond to the principle eigenvalues introduced in equation 1, whilst the points in blue
employ a basis fixed at seven temporal time units from the source.
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1.3 Research Plans

This proposal seeks to exploit the methodology outlined above to perform the first com-
prehensive study of the baryon resonance spectrum in full QCD. We will focus on all of
the baryons that can be constructed from u/d and s quarks, namely the nucleon, ∆, Λ, Σ,
Ξ and Ω. Cascades in particular are exciting both theoretically and experimentally, since
they are expected to be narrow. Furthermore, there is a paucity of information about the
quantum numbers of some of the states, presenting lattice QCD with an opportunity for
“discovery”.

With decreasing quark mass, baryonic resonances, including most ground states, be-
come unstable, emphasising the need for a variational method to extract several energies,
and two lattice volumes, to delineate between single- and multi-particle states. The proper
treatment of multiparticle states[7], i.e. Nπ etc., will require the use of stochastically-
generated “all-to-all” propagators. The use of such propagators is part of an associated
proposal (Juge et al.), but anticipating the eventual success of that method at our lightest
pion masses, we are concentrating in this proposal on a more modest calculation at two
pion masses, 465 and 380 MeV, and the smaller two lattices, 2.4 and 3.2 fm, that we
expect to become available in time to complete this proposal. In addition, we will study
the spectrum on Nf = 3 lattices, at a spatial volume of 2 fm; here the resonances we
will be studying are stable, and this data will provide a benchmark for the subsequent
calculations.

2 Computational Strategy

2.1 Actions and Parameters

The use of an anisotropic lattice has proved essential. Experimental data on the excited
baryon states are dense and extend to around 3 GeV. Using conventional isotropic lattices,
with spacings around 2 GeV−1, one can expect significant lattice discretization errors.
Using a highly anisotropic lattice, e.g. with temporal lattice spacing of 6 GeV−1, the dis-
cretization errors are reduced as well as providing more signal of excited states. Therefore
we propose to use the anistropic clover lattices being generated as described in the proposal
of Robert Edwards et al., and being generated under the INCITE award.

The non-perturbative Clover action was chosen since spectrum scaling violations of
masses are quite small - at the target lattice spacing of a = 0.1 fm, the scaling violations are
about 1% in amvector/

√
a2σ [8]. These previous scaling studies used an isotropic quenched

action. We have verified that anisotropic versions of the quenched Wilson fermion action
and tadpole-improved Clover action follow the expected scaling forms, as shown in Figure 5.
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Figure 5: The figure shows the scaling behavior of various actions. Our studies are shown
as the crosses for Wilson action (blue), Wilson with stout links (green) and clover (red);
the anisotropic clover action shows the good scaling behavior required for studies of the
spectrum.

2.2 Correlator construction

The “measurement” element of the calculation is substantial, employing the construction
of generalized baryon correlators :

Bαβγ,ᾱβ̄γ̄(t; 0) =
∑

~x

εabcεāb̄c̄P aā
αᾱ(x; 0)Qbb̄

ββ̄(x; 0)Rcc̄
γγ̄(x; 0), (2)

where P,Q, R are each quark propagators that may contain displacements and smearings
at both source and sink; Greek letters denote spinor indices at source and sink. The
group-theory projections, involving the appropriate linear combinations of Dirac indices,
are performed subsequently on a workstation.

The computation of the generalized baryon correlators is purely local, apart from a
global sum, but involves a very large number of operations per site, around 2 million. Our
exploratory studies aimed at delineating sufficiently many eigenvalues indicate the need for
a very large large basis of interpolating operators, and in particular the generalized baryon
correaltors of eqn. 2, of the order of 670 for the nucleon. In particular, the identification of
the optimal basis of operators does not involve the reduction in the number of generalized
baryon correlators required. Whilst the relatively heavy computational cost for these
measurements was acceptable in the exploratory study on the smaller lattices, it is clearly
necessary to improve the computational efficiency for this production study. This we are
doing in three ways:

1. Saving diquark temporaries in the evaluation of eqn. 2 immediately reduces the
number of operators by a factor 3.2

2. Identification of common diquarks across the different qqq’s yields a further factor of
two in cost
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3. Finally, the evaluation of the generalized baryon correlators for only those Dirac
components needed in the construction of the final operators yields a further factor
of around three.

Thus we base our cost estimates on the assumption that the number of floating-point
operations per site required to compute eqn. 2 is reduced by a factor of ten to 200k, and
that the limited communication demands will allow us to attain a performance comparable
to that of the clover solver.

3 Software

The valence work is rather I/O intensive, and therefore we propose continuing the valence
spectroscopy calculations on the clusters at JLab or at FNAL. The solver is implemented
in Chroma, and we adopt the benchmark figure of 1.4 Gflop/node on the dual-core “6n”
cluster in constructing our time estimates. The generalized-baryon-correlator construction
is also implemented in Chroma; so far optimization efforts have concentrated on the solver,
but we estimate the purely local nature of the computation will enable us to attain a
performance comparable to that of the solver. Finally, the reduction of the generalized
baryon correlators to form the irreducible matrix of operators is performed using adat, and
can be accomplished, albeit slowly, on workstations.

4 Required Resources

4.1 Quark propagators

We will compute valence quark propagators at both the light (u/d) and strange quark
masses. Two quark masses on each ensemble will enable us to study all the standard
baryons (N, ∆, Λ, Σ, Ξ and Ω). Our estimate for the time required to compute the clover
fermion propagators is based on a corresponding quenched computation of the propagators,
using the anisotropic clover action with “stout” links, on a 163×64 lattice at the same lattice
spacing and renormalized anisotropy proposed here. We find that for mπ = 390 MeV, 1300
CG iterations are required per colour-spin component, whilst for mπ = 650 MeV, around
850 CG iterations are required. We therefore assume the behaviour

Niter = A +
B

m2
π

, (3)

with the number of iterations independent of the volume.
The exploratory studies of baryon spectroscopy outlined earlier demonstrated the need

to compute propagators from four sources: single-site, displaced in the ±x directions, and
in the +y direction. The single-site, “S-wave” propagators are of general use, and are
therefore these will be saved. Thus we require three additiional propagators, at each of
the u/d and s quark masses, that will not be saved; note that, in estimating the cost of
propagator generation, we conservatively assume an s̄s “pseudoscalar masss” of 650 MeV.
The cost of computing these propagators is shown in Table 1.
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Size mπ Nit 6n Proc-Hours
203 × 128 650 847 22491
243 × 128 650 847 38865

485 1050 48173
380 1338 61383
300 1788 82061

323 × 128 650 847 92124
485 1050 114190
380 1338 145500
300 1788 194516
254 2261 245908

Table 1: The number of processor-hours on the 6n cluster required to compute four
propagators at a given quark mass, on a total of 700 configurations.

Size Nt Nqqq 6n Proc-hours
203 × 128 40 671 5964
243 × 128 40 2000 30720
323 × 128 40 2000 72818

Table 2: The cost of generating generalized baryon propagators on 700 configurations for
a given mu/d and ms. Note that for the degenerate Nf = 3 theory, a smaller number of
generalized baryon correlators are needed.

Given the number of operators needed for a successful study of the spectrum, the
construction of hadronic correlators in the baryon sector is a substantial undertaking; on
each configuration, we propose computing a total of 2,000 generalized baryon correlators,
enabling us to measure the lowest-lying energies for each isospin. We find that we can
observe a signal only over the first 20 time slices. Since we employ anti-periodic boundary
conditions in the temporal direction, we propose to compute the generalized baryon corre-
lators for only 40 time slices. The cost of constructing these is, of course, independent of
the quark masses employed, and therefore we show in Table 2 the cost of computing 2,000
qqq correlators on 700 configurations for a fixed pion mass at each of our two lattices sizes

Finally, in Table 3, we show the aggregate cost of performing our program at each value
of the pion mass, and it is this table that encapsulates our request for resources. Performing
the full analysis is sufficiently demanding that we would anticipate that future INCITE or
early-use proposals include sufficient computational resources to accomplish a reasonable
fraction of the measurement. The most urgent task of this program is demonstrating that
we can delineate the single- and multi-particle states. Therefore, our proposal centers on an
analysis of the spectrum at mπ = 485 MeV on both lattice sizes, together with an analysis
at mπ = 380 MeV on the smaller lattice, which should be sufficient to allow a finite-volume
analysis to delineate multiparticle states at the 485 MeV pion mass. In addition, we will
perform an analysis of the Nf = 3 data at mπ = 650 MeV. Thus our request is for 560,000
Processor-Hours on the 6n cluster at Jefferson Lab, or the equivalent on any of the other
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Size mπ Ncfg Propagators qqq Total
203 × 128 650 700 22491 5964 28455
243 × 128 485 700 87038 30720 117758
243 × 128 380 700 100248 30720 130968
243 × 128 300 700 120926 30720 151646
323 × 128 485 700 206314 72817 279131
323 × 128 380 700 237624 72817 310441
323 × 128 300 700 286640 72817 359457
323 × 128 254 700 338032 72817 410849

Table 3: The table shows the cost of the computation of three u/d and three s quark
propagators at each value of mπ on 700 configurations, together with the cost of computing
the qqq’s; for the Nf = 3 calculation, only a single quark mass is used. The final column
is the sum of the two previous columns; the entries in bold are used in constructing our
time request.

clusters.

5 Data Sharing

We are proposing to save the single-site propagators, which would be of general use to the
USQCD community, as part of this proposal, save for the exclusivity statements below, but
are not proposing to save any of the displaced-source propagators. We would be prepared
to store the latter should there be demand from other projects.

6 Exclusivity

The computation of the excited resonance spectrum using our lattice group-theory methods
for baryons in the light-quark sector are exclusive elements of this proposal. We will in
addition perform a conventional computation of the hadron spectrum and two-point matrix
elements. We will make the saved propagators available as they are generated to members
of the USQCD Collaboration, providing they are not used for the exclusive analyses above;
we will release them without restriction in July 2009

7 Roadmap

The generation of anisotropic lattices is a multi-phase campaign, outlined in the proposal
and presentation of Robert Edwards; the measurement of the baryon spectrum on those
lattices is an essential component and motivator for the project. Should additional re-
sources become available, we propose to advance the calculations listed in Table 3 of ths
proposal, continuing in the outyears with calculations on the coarse a = 0.125 lattices,
and at smaller quark masses and larger volumes; we have an active research effort aimed
at establishing the efficacy of a stochastic approach, and hope to employ that in later
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stages of the work. Note that these additional computations would entail only the transfer
of the gauge configurations to USQCD resouces, and the storage of only the single-site
propagators; thus we not envisage severe data-transfer impediments.
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