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Abstract

We propose to employ the anisotropic Ny = 2+ 1 dynamical clover configurations
for a study of the baryon resonance spectrum for the baryons that can be constructed
from u/d and s quarks. We will perform the computation at three values of the pion
mass: m,; = 875,560 and 315 MeV, and employ two lattice volumes at the lightest
mass with the aim of delineating single- from two-body energies. We request the
equivalent of 2.1M 6n-node hours.
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1 Physics Goals

In order to really understand QCD and hence test whether it is the complete theory of
the strong interaction, we must determine the spectrum of mesons and baryons that it
implies and test those spectra against high quality experimental measurements. The com-
plete combined analysis of available experimental data on the photoproduction of nucleon
resonances is the 2009 milestone in Hadronic Physics (HP), and the measurement of the
electromagnetic properties of the low-lying baryons is an HP 2012 milestone.

Given the current intense experimental efforts in hadron spectroscopy, the need to
predict and understand the hadron spectrum from first principles calculations in QCD is
clear. Hence, our goal in this proposal is to embark on a comprehensive study of the baryon
spectrum, employing the anisotropic clover gauge configuration currently being generated.
Given that an important strategic goal of USQCD is to employ lattice QCD calculations
to address the key questions in hadronic physics, we believe this proposal satisfies one of
the criteria for a Class-A proposal.

1.1 Resonances and Lattice QCD

A comprehensive picture of resonances requires that we go beyond a knowledge of the
ground state mass in each channel, and obtain the masses of the lowest few states of
a given quantum number. This we can accomplish through the use of the variational
method[l, 2]. Rather than measuring a single correlator C'(t), we determine a matrix of

correlators

Ci;(t) =Y _(Oi(&,1)01(0,0)),
where {O;;i = 1,...,N} are a basis of interpolating operators having given quantum
numbers. We then solve the generalized eigenvalue equation

C(t)u = A(t, to)Clto)u

to obtain a set of real (ordered) eigenvalues A, (t,t), where \g > A\ > -+ > Ay_q. At
large Euclidean times, these eigenvalues then correspond to the different energies FE, as

follows
An(t, to) — g~ Enlt=to) [1 + O(e*AE"(t*tO))} . (1)

where AFE, = min{| E, — E; |: i # n}. The eigenvectors u are orthogonal with metric
C(tp), and a knowledge of the eigenvectors can yield information about the structure of
the states. A variation of this method, which we explore below, is to fix the basis at
some reference time slice t*, and then examine the spectrum in this preconditioned basis
of operators.

Crucial to the application of variational techniques is the construction of a basis of
operators that have a good overlap with the lowest-lying states of interest. These operators
should have the property that they respect the symmetries of the lattice, rather than being
a mere discretization of continuum interpolating operators. The LHP Collaboration has
developed techniques to enable the construction of baryon interpolating operators|[3, 4].
An important theme in our analysis is the need to extract as many energy levels as feasible
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Figure 1: The figure shows the experimental masses assigned according to the irreps. of
the cubic group.[5]. The spins can be identified by seeking degeneracies between energy
levels in the different irreps. in the approach to the continuum limit.

in each irreducible representation (irrep.) admitted by the lattice. The reason for this
is clear from Figure 1, where we show the masses of the observed isospin-1/2 states, but
assigned not according to their continuum spin irreducible representations, but rather
assigned according to the irreps. of the cubic group; there is a dense spectrum of states
in each lattice irrep., and the spins of the states can be identified by seeking degeneracies
between energies in different irreps. in the approach to the continuum limit.

All of our hadronic operators are constructed using gauge-covariantly displaced smeared
quark fields as the building blocks; the use of smeared quark fields is essential both to reduce
the statistical noise, and to ensure the dominance of low-lying states as close to the source
as possible[5]. The displacements are along the six directions allowed by the spatial cubic
lattice. A displaced quark and a displaced antiquark field can be joined together to form
a gauge-invariant meson operator, while three displaced quark fields can be connected to
form a gauge-invariant baryon operator. The specific orientations we employ are shown
in Figure 2. The group-theoretical projection method is used to combine the different
orientations of these elemental operators to form operators transforming irreducibly under
the cubic group.

1.2 Recent Progress and Current Analysis

We had previously completed exploratory studies on small 12® x 48 quenched anisotropic
Wilson lattices, with a; ~ 0.1 fm, £ ~ 3 and m, = 675 MeV, focusing on the nucleon
I = 1/2 sector[5]. This has now been extended to larger 24® x 64 lattices at a lighter pion
mass m, = 490 MeV, though using a more restricted basis of operators[6]. The pattern of
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Figure 2: The spatial arrangements of the extended three-quark baryon operators. Smeared
quark-fields are shown by solid circles, line segments indicate gauge-covariant displace-
ments, and each hollow circle indicates the location of a Levi-Civita color coupling. For
simplicity, all displacements have the same length in an operator.
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Figure 3: The energies obtained for each symmetry channel of I = % baryons are shown
based on the 243 x 64 lattice data. The scale on the left side shows energies in lattice units
and the scale on the right side shows energies in GeV. The scale was set using the string
tension. Errors are indicated by the vertical size of the box.

states in the I = 1/2 sector is shown in Figure 3, and confirms the tantalizing suggestion,
noted earlier[5], of the existence of a band of negative-parity states well separated from
the higher positive-parity band, as observed experimentally.

These studies have important implications. Firstly, they demonstrate the ability to
extract many energy eigenvalues in an anisotropic lattice calculation. Secondly, in order to
perform this analysis, a sufficiently large basis of operators, and in particular displaced op-
erators, is required, and that basis should encompass a range of possible quark geometries.
Thus we will include operators of the single-site, doubly-displaced-I, doubly-displaced-L
and triply-displaced-T configurations of Figure 2.

We are now extending this study, using our current USQCD allocation, to full QCD, us-
ing the Ny = 2 anisotropic Wilson gauge configurations at a; ~ 0.1 fm and as/a; = 3. The
preliminary results we present here are obtained from an ensemble of 860 configurations
on a 243 x 64 lattice, with m, = —0.4125 corresponding to a pion mass m, = 400 MeV,
close to but somewhat lower than that used in the quenched study above. The configura-
tions are separated by 20 trajectories, but we bin successive configurations to account for
possible autocorrelations, yielding an ensemble of size 430. The spectrum of the lowest-
lying positive-parity baryon states, using conventional single-correlator methods, is shown
in Figure 4, together with the effective mass in the nucleon channel; reliable extraction of
any negative-parity channels is problematic.
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Figure 4: The left-hand panel shows the low-lying baryon spectrum obtained on the Ny = 2
lattices with m, = 400 MeV; the right-hand panel shows the nucleon effective mass for
smeared-source and smeared-sink, together with a single-exponential fit to the data.

In order to perform our analysis, we use the simplification of the variational method
alluded to earlier: we solve the generalized eigenvalue equation at some reference time
tx > to, to obtain variational coefficient v,y:

C’(t*)vk = /\kC(to)Uk. (2)

We then use the {v;} to transform our operators to a new preconditioned basis at all ¢,
wherein the correlation matrix is diagonal at ¢ = t*. We employ the dominant operators
in this new basis, that is those with the largest eigenvalues at ¢ = t*, in the subsequent
analysis. This variation has particular advantages for baryons, where a straighforward
application of the variational method is delicate due to the states, of opposite parity,
propagating in the backward direction on the lattice. For the preliminary results discussed
here, we start with a 16 x 16 correlation matrix constructed from the operators of our
quenched analysis, and employ only the five dominant operators in the preconditioned
basis.

Figure 5 shows the effective masses corresponding to the five dominant diagonal opera-
tors in our preconditioned correlation matrix; the efficacy of our diagonalization procedure,
even for the ground state nucleon, is revealed by comparing the left-hand panel with the
effective-mass plot in Figure 4. The result of single-exponential fits to the diagonal el-
ements of the correlator corresponding to the lowest four energies in the G, channel is
shown in Figure 6; the corresponding fits in the G, channel require that we include a
single (lighter) state of opposite parity propagating backwards on our lattice.

1.3 Research Plans

This proposal seeks to exploit the methodology outlined above to perform the first com-
prehensive study of the baryon resonance spectrum in full QCD. We will focus on all of
the baryons that can be constructed from u/d and s quarks, namely the nucleon, A, A, ¥



T 5 I
06 N Effective Mass Functions 06 g Effective Mass Functions J
: 3 o Glg hins 0_Ore ' 3 ¥ @ G, To=4a, 1" =9 o Glu_hins 0_Ore
& v Glg_bins 1 1re = 7 ? v Glu_bins 1 1re
¥ o ox ~ Glg_bins 2_2.re| - £ 7 S [ " 3 & Glu_bins 2 2re
T ¥ = o Glg bins 3 3re| | .4 £ e 3 ¥ — | o Glu_bins 3 3re
Tz $ Low Glu bins 4 4,
2835 :s8 3 i Glg_bins 4 4re F Glu bins 4 4re
= 04 £ ¥ £ Z o g 5 L " = 041 S o T b
5 P v 4 k4 P 3 g g BB g s 3 %
FE T T 3 T T4 1 2
< s T I I s = | < L R N
s ¢ = | |
: | P2zl
T o s g 1 X T 2 e
02+ = ® 8 ® g ®T T & o g T g & {4 0.2 T f T T3
0 | Lo ) | T |
0 5 15 20 0 5 15 20

110/a( 110/a‘
Figure 5: The left- and right-hand panels show the effective masses in the [ = %G 1 and Gy,
irreps. constructed from the dominant diagonal elements of the correlation matrix diago-
nalized at t* = 9.
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Figure 6: The figure shows the lowest energy eigenvalues from fits to the diagonal elements
of the preconditioned G, and Gy, correlators, as described in the text.



Size mr(MeV) L (fm) m,L

16% x 128 875 1.92 8.5
163 x 128 280 1.92 5.6
203 x 128 315 24 38
243 x 128 315 2.9 4.5

Table 1: The parameters of the lattices being used for this proposal.

= and (2. Cascades in particular are exciting both theoretically and experimentally, since
they are expected to be narrow. Furthermore, there is a paucity of information about the
quantum numbers of some of the states, presenting lattice QCD with an opportunity for
“discovery”.

2 Computational Strategy

2.1 Actions and Parameters

We will use the Ny = 2+1 anisotropic clover gauge configurations that are being generated
as part of the proposal of Edwards et al., at three values of the light-quark pseudoscalar
mass, 875,560 and 315 MeV, on the lattice volumes shown in Table 1; note that the first of
these ensembles corresponds to three degenerate quark flavors. For each of these ensembles,
we will compute valence quark propagators at quark masses corresponding to the light and
strange quarks, and form the baryon correlators as described below. The calculation at
m, = 875 MeV is in a regime where we expect the states under study to be stable, and
to provide a reference point for the other ensembles. At the lightest of the quark masses
in this proposal, we expect open channels to emerge in the energy spectrum for some of
the higher energies, and therefore the choice of two volumes at this mass is to provide a
means of delineating single- and two-particle states.

2.2 Correlator construction

The “measurement” element of the calculation is substantial, employing the construction
of generalized baryon correlators:

Bugass (£0) = Y €™ Pid (23 0) QY5 (w; 0) RS (3 0), (3)

T

where P, (), R are each quark propagators that may contain displacements and smearings
at both source and sink; Greek letters denote spinor indices at source and sink. The group-
theory projections, involving the appropriate linear combinations of Dirac indices, are then
performed subsequently on workstations.

The computation of the generalized baryon correlators is purely local, apart from a
global sum, but involves a very large number of operations per site, around 2 million. Our
exploratory studies aimed at delineating sufficiently many eigenvalues indicate the need



for a very large basis of interpolating operators, and in particular the generalized baryon
correlators of Eq. 3, of the order of 670 for the nucleon. In particular, the identification of
the optimal basis of operators does not involve the reduction in the number of generalized
baryon correlators required.

The construction of the generalized baryon correlators, whilst purely involving local
operations together with a global sum, involves many floating-point operations. To ensure
that these are performed as efficiently as possible, we implement a number of computational
optimizations, such as saving diquark temporaries in the evaluation of Eq. 3 and only
computing the generalized correlators for those Dirac indices contributing to our final
baryon correlation functions. The evaluation of these correlators is independent of the
quark masses, and whilst representing a substantial fraction of the cost of the calculation
at the heaviest pion masses, that cost should become an increasingly small component
with decreasing pion mass, as we note later.

3 Software

The valence work is rather I/O intensive, and therefore we propose continuing the valence
spectroscopy calculations on the clusters at JLab or at FNAL. All the code running in this
proposal is written using USQCD software, and in particular Chroma.

4 Required Resources

4.1 Node-hours

We will compute valence quark propagators at both the light (u/d) and strange quark
masses. Two quark masses on each ensemble will enable us to study all the standard
baryons (N, A, A, ¥, = and Q). Our estimate for the time, and in particular the number
of iterations required to compute the clover fermion propagators, is obtained from those
needed to compute propagators at 875 and 580 MeV, assuming

B
Niter:A—'—W; (4)

s
with the number of iterations independent of the volume.

For each quark mass, we will compute propagators from four sources, using the optimal
smearing determined in our earlier quenched study. All required displacements can be
obtained by rotation from a minimal set of three displaced sources; in addition we also
need the undisplaced sources. The cost of the propagator inversions is listed in Table 2.
The ability to extract excited-state masses relies on the measurement of comprehensive
basis of operators we have constructed, and the construction of the correlators is a major
component of the analysis; the cost is listed in Table 3.

Thus the total request is for 2.1M 6n-node-hours, or its equivalent on other
clusters.



Size m,(MeV) Nz 6n node-hours

163 x 128 875 1000 18557
163 x 128 580 1000 37114
20° x 128 315 2000 454034
243 x 128 315 2000 659255
Total: 1168960

Size m.(MeV) Ny 61 node-hours
16% x 128 580 1000 22463
203 x 128 315 2000 91570
243 x 128 315 2000 151629
Total: 265662

Table 2: The upper table provides the cost of generating light (u/d) quark propagators
from four sources, as described in the text. The lower table gives the cost of generating
the s-quark propagators from four sources for all but the Ny = 3 lattices.

Size m;(MeV)  Negg Ny 60 node-hours

163 x 128 875 1000 671 17450
163 x 128 580 1000 2000 52012
20°% x 128 315 2000 2000 203175
243 x 128 315 2000 2000 351086

Total: 623723

Table 3: The cost of generating generalized baryon propagators on each of the ensembles,
for a given valence m, 4 and mg; note that for the SU(3)-symmetric point, corresponding
to m, = 875 MeV, a smaller number of correlators is required.



Size myz(MeV)  Negg Nyqq TByte (tape) 6n-equiv. node-hours

16% x 128 875 1000 671 1.8 7200
16% x 128 580 1000 2000 2.3 20920
203 x 128 315 2000 2000 5.3 20920
243 x 128 315 2000 2000 5.3 20920

Total: 17.7 70800

Table 4: The tape storage requirements for the generalized baryon correlators, stored in
sparse format.

Size ma(MeV) Ny TByte (tape) 6n-equiv. node-hours

16% x 128 875 1000 1.1 4400
163 x 128 580 1000 2.2 8800
203 x 128 315 2000 8.6 34400
243 x 128 315 2000 14.8 59600

Total: 26.7 106800

Table 5: The tape storage requirements for the the single-site propagators, at both the
light- and strange-quark masses.

Criteria for Future Computations

The program articulated in the proposal of Edwards et al., envisages the continuation to
larger volumes, notably at m, = 315 MeV, and a lighter mass at 250 MeV, as well as at
400 MeV; computational resources would be required for analysis of each of these lattices,
for this project typically of the order of 30% of the cost of lattice generation. An important
criterion in constructing our future baryon spectroscopy plans is the extent to which we
will be able to delineate single- and scattering states on our two volumes at 315 MeV, and
the efficacy of employing the stochastic methods being investigated in the proposal of Juge
et al..

4.2 Disk Space

We propose to archive on tape all the generalized-baryon correlator files, in a sparse format
containing only the useful Dirac components.

In addition, we require sufficient disk space to store the largest of the ensembles of
generalized baryon correlators in Table 4, together with sufficient space to store the cor-
relation matrices projected into the irreduncible representations: a total of 8 Thyte, or
160,000 6n-node-hours equivalent.

The single-site propagators at both the light- and strange-quark masses could be of
potential use for other USQCD projects; it should be noted, however, that our choice of
smearing parameters is very much signed to extract the resonance spectrum of baryons.
The tape storage requirements for these propagators are listed in Table 5.
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5 Data Sharing

The quark propagators computed from a “single-site” or local source are potentially of use
in other projects, and we would be prepared to store them to tape as discussed above.

6 Exclusivity

The computation of the excited resonance spectrum using our lattice group-theory methods
for baryons with various isospin and strangeness quantum numbers in the light-quark
sector are exclusive elements of this proposal. We will in addition perform a conventional
computation of the hadron spectrum and two-point matrix elements. We will make the
saved propagators available as they are generated to members of the USQCD Collaboration,
providing they are not used for the exclusive analyses above; we will release them without
restriction July 2010.
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