

Chroma I: A High Level View

Bálint Joó (bjoo@jlab.org)
Jefferson Lab, Newport News, VA

given at
HackLatt'06

NeSC, Edinburgh
March 29, 2006

Introduction

Chroma and its dependent software components

Getting it

Building it

Linking against it

What's in it?

Running it

Believing it (?)

Chroma and Other Software Components

Optional feature or optional
performance optimisation

Getting the bits and pieces

QMP, QDP++ and Chroma (and bundled packages) and
BAGEL QDP from anonymous CVS:

Root :pserver:anonymous@cvs.jlab.org:/group/lattice/cvsroot

Modules: bagel_qdp, qmp, qdp++, chroma

USQCD Web page:

http://www.usqcd.org/usqcd/software

BAGEL and Wilson Dslash from Peter's web page
http://www.ph.ed.ac.uk/~paboyle/bagel/Bagel.html

GMP from: http://www.swox.com/gmp

LibXML2 from: http://www.xmlsoft.org

mailto:anonymous@cvs.jlab.org
http://www.ph.ed.ac.uk/~paboyle/bagel/Bagel.html

Building

Easiest Target: Anyone Can Build

Scalar Workstation Build

Assumption: libXML and GMP already installed with
OS distribution

Modules to build: qdp++, chroma

Most Difficult Targets:

QCDOC, BG/L and IBM Pseries or new Machines

Modules to build: gmp, bagel modules, libxml, qdp++,
chroma. Possibly qmp too (except where it is native)

Best done by developing a script

General Build Information

Uses GNU autoconf 2.59 and GNU automake 1.9.3

Typical configure; make ; make install type build

Atypical aspects:

Work in “cross compilation” mode most of the time

Autoconf cannot autodetect many features of target
system (Custom OS, Queues etc etc)

pervasive use of --enable-feature and --with-package
switches

Want most efficient compiler flags

CXXFLAGS and CFLAGS on configure command line get
complicated

Some Typical Flags: QDP++

QDP++

--prefix=<install location>

--enable-parallel-arch=(scalar|parscalar)

--enable-precision=(single|double)

--enable-sse, --enable-sse2 (SSE compatible only)

--with-libxml2=<location of libxml2 installation>

--with-qmp=<location of QMP installation>

--with-bagel-qdp=<location of Bagel QDP installation>

--enable-qcdoc (QCDOC Specific memory allocator)

CXXFLAGS=”-O2 -finline-limit=50000” CFLAGS=”-O2”

Some Typical Flags: Chroma

Chroma

--prefix=<install location>

--with-qdp=<location of QDP++ installation>

--enable-sse-wilson-dslash (SSE Only)

--enable-sse-dwf-cg (SSE single prec only)

--enable-altivec-dwf-cg (AltiVec Single prec only)

--with-bagel-wilson-dslash=<location of BAGEL dslash>

--with-gmp=<location of GMP library>

CXXFLAGS=”” CFLAGS=”” (disables default -g flag)

Other flags picked up from lower layers eg QDP++

Hints to help you get building

There is a work in progress installation guide
http://www.ph.ed.ac.uk/~bj/HackLatt05/Installation/html/index.html

There are possibly out of date example
configurations in

qdp++/install_scripts/

chroma/install_scripts/

There is a standardized build setup for the JLAB
based on the nightly builds (useful for clusters)

CVS Module: jlab-standard-chroma-build

http://www.ph.ed.ac.uk/~bj/HackLatt05/Installation/html/index.html

Linking against already installed chroma

Suppose chroma is installed in /foo/chroma

Use script chroma-config in /foo/chroma/bin

CXX=`chroma-config --cxx`

CXXFLAGS=`chroma-config --cxxflags`

LDFLAGS=`chroma-config --ldflags`

LIBS=`chroma-config --libs`

Compile your program (prog.cc) with:

$(CXX) $(CXXFLAGS) prog.cc $(LDFLAGS) $(LIBS)

NB: Ordering of flags may be important.

What is in Chroma?
Measurements:
(sequential) sources,
smearings propagators
spectroscopy, 3pt
functions, hadron
structure, wilson loops,
eigenvalues

Fermion Actions:
wilson, tm, clover, 4D and
5D overlap, variety of
coeffs, DWF,
AsqTAD

Monomials:
two flavor 4D&5D,
one flavor rational 4D&5D,
Hasenbusch Term (4D),
LogDetEvenEven

GaugeActions
plaquette, rectangle,
tree level and 1 loop
LW, RG impr. plaq+rect,
DBW2

Inverters:
CG, CGNE, BiCGStab, Multi Shift
CG, SUMR, GMRESR, MINRES

Chronological Predictors:
Zero Guess, Last Solution,
Linear Extrapolation,
Minimum Residual

Eigensystems:
Kalkreuter-Simma RitzMD Integrators:

Leapfrog, Omelyan (SW?)
and Multi Time Scale
versions of same

Boundaries:
(anti)periodic,Dirichlet,
twisted, Schroedinger
Functional

HMC (hmc) Pure Gauge Heatbath (purgaug)

I/O Support:
NERSC, CPPACS,
UKY, SciDAC and
ILDG Configurations

Measurement (chroma)

Chroma Applications

Measurement Application: chroma

Gauge Generation Applications: hmc and purgaug

Installed in same place as chroma-config

eg: /foo/chroma/bin

Typical usage flags (-i, -o, -geom):

./chroma -i in.xml -o out.xml -geom “Px Py Pz Pt”

in.xml – Input Parameter XML File

out.xml – Output XML Log File

“Px Py Pz Pt” the (possibly virtual) Processor
Geometry (eg -geom “4 4 8 8” for QCDOC Rack)

XML Driven Programs – Chroma Input File

<?xml version=”1.0” encoding=”UTF-8”?>
<chroma>
<annotation>Your annotation here</annotation>
<Param>
 <InlineMeasurements>
 <elem>
 <Name>MAKE_SOURCE</Name>
 <Frequency>1</Frequency>
 <Param/>
 <NamedObject>
 <source_id>sh_source_0</source_id>
 </NamedObject>
 </elem>

 <elem>
 <Name>PROPAGATOR</Name>
 <Frequency>1</Frequency>
 <Param/>
 <NamedObject>
 <source_id>sh_source_0</source_id>

 <prop_id>sh_prop_0</prop_id>
 </NamedObject>
 </elem>
 </InlineMeasurements>
 <nrow>4 4 4 8</nrow>
</Param>
<RNG/>
<Cfg>
 <cfg_type>SCIDAC</cfg_type>
 <cfg_file>foo.lime</cfg_file>
</Cfg>
</chroma>

Input Configuration Details

Global Lattice Size

Task (array element)

Array of Measurements (Tasks)

Named Objects
(communicate between tasks

-- like “in memory” files)

Task specific
parameters

Task Name

XML Input File Examples

Numerous Measurement Task Examples in

chroma/tests/chroma/hadron/

Measurement Tasks for:

sources, smearings, propagators, spectroscopy, 3pt
functions, eigenvalues

Reading and Writing Named Objects

Also MD and HMC input files in

chroma/tests/t_leapfrog

chroma/tests/hmc

Input file names usually contain the string “ini”

Software Quality Assurance (Testing)

Nightly builds at the JLab (and elsewhere)

framework developed by Zbyszek and Craig in
Liverpool and Robert Edwards at the JLAB

Tests compatibility with compilers, configuration,
building, linking and linking to installed libraries.

Runs Regression Tests on single node targets

Current nightly builds:
parscalar build with SSE, QMP-single comms, g++ v4

parscalar build with SSE, QMP-MPICH over Infiniband with g++ v3

parscalar build with QMP-single comms and BAGEL noarch targets

scalar build with SSE

Chroma Regression Tests

Framework from Craig and Zbyszek and Robert.

Verifies that new code does not break old behaviour
(not that it is necessarily correct)

Uses xmldiff utility from EPCC to compare XML files

Test coverage constantly growing (never enough)

Single node only for now: make xcheck
Source /home/bj/Devel/QCD/chroma/tests/chroma/hadron/propagator/regres.pl

Program Candidate Conclusion
chroma unprec-zolo-ev-multi-v8.candidate.xml PASS
chroma prec_wilson-v9.candidate.xml PASS
chroma prec_clover-v9.candidate.xml PASS
chroma unprec_clover-v9.candidate.xml PASS
chroma prec_wilson-twisted-v9.candidate.xml PASS

Future improvements (SciDAC2)

Infrastructure improvements

Improve native speed of QDP++ (more PETE)

More Regression tests (more more more!!!)

Automated regression and unit tests for QMP,
QDP++, QIO etc

Documentation (Yes! Really!)

Interface with SciDAC level I (QLA)

MultiCore/Threaded optimised code (QMC)

SSE3 Code

BlueGene Code?

Potential Chroma Improvements

Better Eigensolvers

Dynamical Fermion Algorithms

Stout links in MD evolution

Multiple timescales for RHMC pieces

already have them for 2 flavour code and Hasenbusch
thanks to Carsten Urbach

Currently input configuration is special – change this

will be able to smear a config inline without having to
start a second chroma run

Priority dictated by project need as always

Summary (Weighing it all up)

Layered – Extensive use
of SciDAC and 3rd party
libraries

Very portable

Speed through cliche-d
operations and assembly

Quality assurance

High complexity. Can be
difficult to build on
some systems

Compiler constraints

Slow without assembly
code

Needs documentation

Good Side: Bad Side:

Capable of delivering a Wide Variety of Physics

