

Design Patterns in Chroma

Bálint Joó (bjoo@jlab.org)
Jefferson Lab, Newport News, VA

given at
HackLatt'06

NeSC, Edinburgh
March 29, 2006

Design Patterns

Tried and tested object oriented techniques to solve
 commonly occurring problems

Classic Software Design Book: “Design Patterns:
Elements of Reusable Object Oriented Software”,
E. Gamma, R. Heim, R. Johnson & J. Vlissides (aka
The Gang Of Four)

Our implementations of design patterns come from
the LOKI library described in “Modern C++ Design,
Generic Programming and Design Patterns Applied”,
by Andrei Alexandrescu

Read (at least bits of) these books!!!!!!

i

You can find them in your local library!
(gratuitous plug for librarians everywhere)

Design Patterns I: Smart Pointer (Handle)

Reference counting “smart pointer”

Assignment / copy of handle increases ref. count

Destruction of handle reduces reference count

When ref. count reaches zero destructor is called.

#include <handle.h>
{
 Handle<Foo> f(new Foo());
 Foo& f_ref = (*f);
 f_ref.method();
 f->method();

}

Construct with newly allocated
pointer. Reference count is set to 1

Dereference like
normal pointer

Handle goes out of scope,
reference count is decreased, reaches 0,
 so delete is called and memory is freed

Design Patterns II: Singleton

An entity of which there is only one within a program

Kind of a “virtuous global object”

Static class + static methods != singleton

Destruction/Life-time/Co-dependency issues

Used for eg:

Factories (see later)

Shared XML Log file

QDP++ Memory Allocator

Staggered Fermion Phases

Design Patterns II: Singletons

Define as (eg: in my_singleton.h)

Use as

#include “my_singleton.h”

TheMySingleton::Instance().memberFunction();

typedef SingletonHolder< MyClass,... > TheMySingleton;

LOKI Singleton
implementation template

Class of which there
will be only one instance

Policy Templates
(eg: staticity, lifetime)

(Type)Name to refer
to singleton. Our

convention: singleton names
start with “The” or “the”

Returns Reference to singleton Instance

Member function
of instance object

Design Patterns III: Factory Function

A function to create objects of a given kind.

Abstracts away details involved in creation

Can create Derived Classes of a given Base Class

ie: allows selection of particular implementation for
an abstract interface

Useful as a Virtual Function in a class

Circle*
create()=0;

Circle: Shape
Triangle*
create()=0;

Triangle: Shape

Shape* create()=0;

Shape:

Covariant Return Rule:
Return objects of derived

class, not of the base

Design Patterns III: Factory Function

A new instance of an object is created

Memory is allocated

Drop result into a Handle
Handle< Shape > my_shape(Circle::create());

Sometimes a concept needs several objects

Fermions: link state with BCs, Fermion Matrix, a
propagator solver for the kind of fermion.

Group together (virtual) factory functions in a (base)
class => Factory Class

(Warning: Not every virtual func. is a factory func.)

Design Patterns IV: Factory

Suppose you want a choice of creating shapes at run
time

What is the best pattern?

Naively: int t; read(xml, “/Shape/Type”, t);
Shape *my_shape;
switch(t) {
 case CIRCLE:

my_shape = Circle::create();
break;

 case TRIANGLE:
my_shape = Triangle::create();

 break;
 default:

QDPIO::cerr << “Unknown shape” <<
endl;
 QDP_abort(1);
};
Handle<Shape> shape_handle(my_shape);

Design Patterns IV: Factory

Criticism

For every new shape I create I need to edit
the source files for the shape

The switch statement in
EVERY SINGLE PLACE WHERE I CREATE A SHAPE

Having to edit seemingly unrelated files gets error
prone

As I have more shapes, my switch statement becomes
 unmanageably long

Is there a better way?

Yes! Use a map!

Design Patterns IV: Factory

Can now create shapes by querying the map

“Circle” Circle* Circle::create()

“Triangle” Triangle* Triangle::create()

std::map<std::string, Shape* (*)(void) > -- map from a string to a factory
fn.

A Map is an associative array (indices don't have to
be numbers)

std::map<std::string, Shape* (*)(void)> shape_factory_map;
shape_factory_map.insert(make_pair(“Triangle”, Triangle::create()));
shape_factory_map.insert(make_pair(“Circle”, Circle::create()));

std::string shape_name;
read(xml, “/Shape/Name”, shape_name);

Handle<Shape> my_shape((shape_factory_map[shape_name])());

Look up name in map,
invoke returned function

Insert factory
function and
name pairs

Design Pattern IV: Factory

Details of creation localized in the map.

Individual creations simplified.

BUT Name,Function pairs need to be added to map

If there was a global map, each Shape could call the
insert function in own source file

Implement map as a Singleton
triangle.cc:

class Triangle : public Shape {
public:
 Triangle* create() { ... };
};
static bool registered =
 theShapeMap::Instance().insert(make_pair(“Triangle”,
 &(Triangle::create()));

Singleton access

Design Patterns IV: Factory

This pattern is the Factory pattern

The essence is a map from ProductID to Product
Creation Function

We use the LOKI implementation from
Alexandrescu's book (ObjectFactory<> template)

Provides registerObject function for map insertion.

Provides createObject function for map look-up

Allows control of parameters to createObject

Allows us to customize policies (eg create using new,
create using malloc, etc etc)

Our Typical Scenario in Chroma

Define Factory in xxx_factory.h – specialise SingletonHolder and
Object Factory templates
(eg: chroma/lib/update/molecdyn/monomial/monomial_factory.h)

 typedef SingletonHolder<
 ObjectFactory<
 Monomial< multi1d<LatticeColorMatrix>,
 multi1d<LatticeColorMatrix> >,
 std::string,
 TYPELIST_2(XMLReader&, const std::string&),

 Monomial< multi1d<LatticeColorMatrix>,
 multi1d<LatticeColorMatrix> >* (*)(XMLReader&,
 const std::string&),
 StringFactoryError> > TheMonomialFactory;

Singleton Style
Product

Type

Product ID (key) type

Factory Template

Creation Function
Type

Map Lookup
ErrorType

Params of Creation Func

Our Typical Scenario in Chroma

In xxx_product.h – define the product and a product specific namespace
(eg: chroma/lib/update/molecdyn/monomial/unprec_two_flavor_monomial_w.h)

 namespace UnprecTwoFlavorWilsonTypeFermMonomialEnv
 {
 extern const std::string name;
 extern const bool registered;
 };

 class UnprecTwoFlavorWilsonTypeFermMonomial :
 public TwoFlavorExactUnprecWilsonTypeFermMonomial<
 multi1d<LatticeColorMatrix>,
 multi1d<LatticeColorMatrix>,
 LatticeFermion>
 {
 ...
 };

Namespace for product
so we can reuse the

“name” and “registered”
elsewhere

The actual class declaration

key in map
(defined in .cc)

is product
registered/linkage

Our Typical Scenario in Chroma

In xxx_product.cc – almost everything else:
(eg: chroma/lib/update/molecdyn/monomial/unprec_two_flavor_monomial_w.cc)
 namespace UnprecTwoFlavorWilsonTypeFermMonomialEnv
 {
 Monomial< multi1d<LatticeColorMatrix>, multi1d<LatticeColorMatrix> >*
 createMonomial(XMLReader& xml, const string& path)
 {
 return new UnprecTwoFlavorWilsonTypeFermMonomial(
 TwoFlavorWilsonTypeFermMonomialParams(xml, path));
 }

 const std::string name(“TWO_FLAVOR_UNPREC_FERM_MONOMIAL”);

 bool registerAll()
 {
 bool foo = true;
 foo &= WilsonTypeFermActs4DEnv::registered;
 foo &= TheMonomialFectory::Instance().registerObject(name,
 createMonomial);
 }

const bool registered = registerAll();
 }

Code for creation fn

The name, declared as extern in .h

Ensure dependency is
registered (see later)

Call to Registration

called at start up

Fly in Ointment - Linkage

If the registered symbol is not referenced in our
program then the compiler may not link
xxx_product.o. No linkage means:

registerAll() is not called at startup

our Monomial does not get registered

our temple collapses around our heads

A solution (aka hack) to this program is to make sure
we reference the symbol.

linkageHack() function in chroma.cc and hmc.cc

linkageHack and Aggregation

in linkageHack() we explicitly reference every
registered product we need.

too many products – we want to aggregate

xxx_aggregate.h and xxx_aggregate.cc files
namespace WilsonTypeFermMonomialAggregrateEnv
{
 bool registerAll()
 {
 bool success = true;
 success &= UnprecTwoFlavorWilsonTypeFermMonomialEnv::registered;
 success &= EvenOddPrecConstDetTwoFlavorWilsonTypeFermMonomialEnv::registered;
 success &= EvenOddPrecLogDetTwoFlavorWilsonTypeFermMonomialEnv::registered;

 // and more ...

 return success;
 }
 const bool registered = registerAll();
}

(chroma/lib/update/molecdyn/monomial/monomial_aggregate_w.cc)

Namespace for Aggregate

Reference individual registered-s

Referencing this will pull in all the
individual ones

Comments on Linkage Hack and Aggregation

Using the aggregation our linkageHack function is
simplified

 bool linkageHack(void)
 {
 bool foo = true;
 foo &= GaugeMonomialEnv::registered;
 foo &= WilsonTypeFermMonomialAggregrateEnv::registered;
 foo &= LCMMDIntegratorAggregateEnv::registered;
 foo &= ChronoPredictorAggregrateEnv::registered;
 foo &= InlineAggregateEnv::registered;
 return foo;
 }

Still not ideal solution – since now we lose fine control

eg: on QCDOC want to omit some individual unused
products or we run out of space (.text segment)

In principle annoyance: Aggregates and Linkage Hack

equivalents of big switch statement we didn't want

Summary

In Chroma, we make use of several design patterns

Smart Pointer, Factory Function, Singleton, Factory

We use these patterns EVERYWHERE

We make great use of the LOKI library

I have shown how these patterns 'look' in the code

Using patterns allowed us great flexibility and solved
 many problems

eg: using many kinds of fermion without recompilation

BUT: We are still annoyed by the linkage issue and
are looking for a portable solution

