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Chroma
• QDP++ covers ‘nuts and bolts’ for us

– provides lattice types/expressions
– hides parallelism 

• Chroma provides the infrastructure for constructing LQCD 
applications
– Components: Gauge And Fermion Actions, Solvers, MD etc.
– Higher Level: 

• two full applications: chroma and hmc
• lots of measurement tasks with XML interface

• NB: This is chroma the LQCD code 
– Not: Chroma(tm) the Lustre Filesystem Management software 

from Whamcloud.
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Chroma will be 10 this year
• first check in is dated Dec 16, 2002
• Chroma is entering ‘middle-age’
• Structurally pretty stable 

– mostly tweaks (new solvers etc)
– QUDA solver integration 

• Another 10 years and Exascale? 

As a result of the customer advocacy and an analysis by middle 
management, the project requirements were modified to closely 
match the requirements of the users and a more realistic schedule 
was developed.  

We judged the level of maturity of the code project to be 
somewhere between CMM Level 2 and Level 3 in terms of the 
processes and practices the Falcon code group is following[5]. 

The team has not had a formal CMM assessment, but has had 
several internal and external audits.  

4. Falcon Life Cycle 
The FALCON code project lifetime is expected to be on the order 
of 30 years (Figure 3). This is based on the experience with 
similar projects at this institution. Indeed, some projects like 
Falcon have had lifetimes of up to 45 years. The first part of the 
life cycle was dedicated to development of the preliminary, initial 
capability to solve the conservation equations without accurate 
source terms or coefficients. This took about five years. Now that 

capability is being tested. Further development will continue until 
a production capability has been achieved with more accurate 
source terms and coefficients. The production phase involves 
heavy use and testing by the user community. During the 
production phase, the code team will support the use of the code, 
maintain the code, port it to new platforms, and develop and add 

new capability as required by product engineers. 

For similar projects at this institution, the ultimate life span of the 
code is determined by user demand and the difficulty of 

successively porting the code to new platforms. When a successor 
can replace the older code, and the product engineers have made 
the transition from the older code to the successor code, support 
for the older code is stopped and it is “retired”. The development 
of new capability then shifts to the successor code. The Falcon 

project is in the process of displacing an older project with less 
capability. The life-time of these projects is much longer than the 
time between new platforms. Thus porting to the new platform 
becomes much more important than extensive performance 
optimization for a particular platform.  

Like many computational simulations, the FALCON code project 
has a strong element of research and development to ensure that 
new algorithms are developed and successfully implemented. The 
users also have needs that must be met if the code project is to be 
successful. The adequacy of the models in the code can only be 
determined as part of an intensive validation program. It was 

difficult to draft a detailed list of requirements before the project 
was begun or to specify a detailed schedule.  

In the case of the Falcon project, senior institutional management 
and the sponsor specified a set of requirements that would allow 
them to “sell” the program to the funding sources. This is similar 
to experiences in the Information Technology (IT) industry where 
a marketing department identifies market opportunities, and then 
signs up customers by promising a level of code capability that 
outbids the competition. Then the software engineers must deliver 
the promised capability. This contributes to over-promising the 
capability that can be delivered within the defined schedule and 
resource level[6, 7]. 

In the case of the Falcon project, the detailed schedule initially 

specified by the sponsor and senior institutional management was 
not based on the prior experience with similar codes or 
quantitative estimates. Instead the schedule was based on when 
the capability was desired. In addition, the sponsor and 
institutional management chose a set of goals that appealed to the 
funding agency but were not the highest priority for the ultimate 
customers, the product engineers. The customers needed and 
wanted a different set of capabilities. They thus had little interest 
in the initial code project. Once it became clear that the schedule 

was almost a factor of three too optimistic and that the initial 
goals were not appropriate, the project goals were changed to 
match the needs of the customers and a more realistic schedule 
was developed.  

5. Workflows and Tasks 
The institution that managed the Falcon project has had decades 
of experience developing and using similar (but less capable) 

simulations. However, that experience was in serial development 
(i.e. develop one capability and test it, then develop a second 
capability and add it to the first, etc.). Serial code development 
would have taken 20 years or more to achieve the desired 
capability. The Falcon code project and others begun at the same 
time planned to develop the major components in parallel to speed 
up the overall development process (Figure 4). Component 
development in parallel placed new and much greater demands on 
project management issues since the code teams were four to five 

times larger than in the past. It also called for better risk 
management techniques. If many components are needed for the 
full capability, one failure would double the overall development 
time. This risk was realized for the Falcon project. A contract 
support group did not deliver a key component. The Falcon team 
has had to develop it. This has subtracted from the resources 

Figure 3.  Falcon Project Life Cycle. The small tic marks 
denote 6 month release dates.  
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Some Design Aims
• Try to capture mathematical structure, through class 

structure
– Inheritance, virtual functions

• Use extensible techniques (Patterns)
– Avoid monster switch statements
– Use map/factory based creation

• Would like it to be easy to drive from external file
– Little ‘measurement’ interpreter (Command Pattern)
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F = X†ṀY

y = Mx

Capturing Mathematical Structure
• Demonstrate with Even Odd Preconditioning:

y = MxLinear Operator:
LinearOperator<T> : 
 
virtual
void operator(T& y, 
               const T& x,
               enum PlusMinus isign);
virtual const Subset& subset();

‘Differentiable’
Linear Operator:

DiffLinearOperator<T,P,Q> : 
 virtual void operator(T& y, 
               const T& x,
               enum PlusMinus isign);
 virtual const Subset& subset();
 virtual void deriv(P& F, 
            const T& X,
            const T& Y,
            enum PlusMinus isign);    
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S = Moo −MoeM
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ee Meo
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�Schur Even Odd 
Preconditioned
Linear Operator
EvenOddPrecLinearOperator<T,P,Q> : 
 virtual void evenOddLinOp(T& y, const T& x, enum PlusMinus isign);

 virtual void oddEvenLinOp(T& y, const T& x, enum PlusMinus isign);

 virtual void oddOddLinOp(T& y, const T& x,  enum PlusMinus isign);

 virtual void evenEvenLinOp(T& y, const T& x, enum PlusMinus isign);

 virtual evenEvenInvLinOp(T& y, const T& x, enum PlusMinus isign);
  
 virtual void operator()(T& y, const T& x, enum PlusMinus isign) {
   T tmp; oddEvenLinOp(tmp, x, isign); 
   T tmp2; evenEvenInvLinOp(tmp2, tmp, isign);
   evenOddLinOp(tmp, tmp2, isign);
   oddOddLinOp(y, x, isign);
   y -= tmp;
 } 

Default 
Implementation  

Thursday, May 31, 2012



Capturing mathematical structure
• Of course force term can also be done like this:

– ie: derivEvenEvenLinOp()
–      derivOddEvenLinOp(), etc...
– then code the full deriv() in terms of these

• Structure also applies to things like quark prop calculation

• And HMC:

Mx = y
S xo = yo −MoeM

−1
ee ye

xe = M−1
ee (ye −Meoxo)

Solve on 1 
checkerboard, 
with modified 

source

Reconstruct 
on other 

checkerboard.

S = 2 Tr Ln Mee − ψ†
o

�
S†S

�−1
ψo
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Parallel Inheritance Trees
• Capture ‘sameness of structure’ amongst different 

components (Linear Operators, QProp solvers, Monomials 
etc) 

DiffLinearOperator

UnprecLinearOperator

EvenOddPrecConstDetLinearOperator

EvenOddPrecLogDetLinearOperator

TwoFlavorMonomial

UnprecTwoFlavorMonomial

EvenOddPrecConstDetTwoFlavorMonomial

EvenOddPrecLogDetTwoFlavorMonomial

Linear Operators Monomials

Thursday, May 31, 2012



Chroma Key Base Classes: HMC

AbsMonomial

AbsHamiltonian

AbsFieldState

AbsMDIntegrator

AbsHMCTrj

Monomials represent  
actions 

(e.g. 2 flavour, gauge etc.)
can compute the action
can compute MD forces

Hamiltonians compute the 
energy from a list of 

monomials

Integrators update gauge 
fields and momenta using 
force terms of Monomials

HMC Traj
updates a field state
using a Hamiltonian 

and integrator 

• Abstract means: templated on Gauge/Momentum types
• HMC written in terms of abstractions
• One needs concrete implementations as well of course.
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Fermion and Gauge States

GaugeBC CreateGaugeState GaugeAction GaugeState

Boundary
Conditions 

Smearing + 
Boundary Conds

S.createState(u)

S.getLinks()

Links with 
smearing and 

BCs

FermBC CreateFermState FermionAction FermState

S.getLinks()

Links with 
smearing and 

BCs

Encapsulate 
Boundary Conditions & Smearing
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FermBCs

• Interface for applying fermionic BCs
• Managed/Used by FermionAction and other GaugeBCs and 

FermBCs (eg Schroedinger Functional)
• Main memebrs:

– modifyU(u) – Apply boundaries to gauge field 
– modifyF(psi) – Apply boundaries to fermion field
–  zero(F) – Zero Force on boundary (eg Schroedinger 

functional)
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Linear Operators

• BaseType for matrices
• Templated on Fermion Type
• Function Object ( has overloaded operator() )

  template<typename T>
  class LinearOperator
  {
  public:
    virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
  
    virtual const Subset& subset() const = 0;
 
   // ... others omitted for lack of space
 };

PLUS apply M
MINUS apply M+

Know which subset
to act on 

Source 
Vector

Target
Vector
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System Solvers
• Attempt to encapsulate various inverter strategies

– Single systems:  SystemSolver< FermionType >
– Multi-mass:   MultiSystemSolver< FermionType >

SystemSolver<T> MultiSystemSolver<T>

LinOpSytemSolver<T>

MdagMSystemSolver<T>

LinOpMultiSystemSolver<T>

MdagMMultiSystemSolver<T>

template<typename T> class SystemSolver { 
public: 
 virtual SystemSolverResults_t operator()(T& psi, const T& chi) const=0;
 virtual const Subset& subset() const=0;
};
template<typename T> class MultiSystemSolver { 
public: 
 virtual SystemSolverResults_t operator()(multi1d<T>& psi, const multi1d<Real>& shifts,

                                     const multi1d<T>& chi) const=0;
 virtual const Subset& subset() const=0;
};

operator() - performs 
solve
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FermionActions

• Manages related Linear Operators, States and Solvers
• Not “action” in the true sense, does not know about flavour 

structure 

Fermion Action

CreateFermState

FermState

createState()
linOp()
lMdagM()
qprop()
quarkProp()

LinearOperator (M+M)

LinearOperator (M)

SystemSolver
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Using Linear Operator

// Raw Gauge Field
multi1d<LatticeColorMatrix> u(Nd);
typedef QDP::LatticeFermion T;
typedef QDP::multi1d<LatticeColorMatrix> P;
typedef QDP::multi1d<LatticeColorMatrix> Q;
FermionAction<T,P,Q>& S = ...;

Handle< FermState<T,P,Q> > state( S.createState(u) ); 

Handle<LinearOperator<T> >  M( S.linOp(state) ) ;

LatticeFermion y, x;
gaussian(x);

(*M)(y, x, PLUS);

Create state
for Fermion

Kernel

Create
LinearOperator

(fix in links)

De-reference Handle
and apply lin. op: y = M x

• Created by FermionAction (factory method)
• Typical Use Pattern:
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SystemSolverArray-s

• Similar Idea to SystemSolvers, but 5D fermions
• LinOpSystemSolverArray<T> to solve with M

– works on multi1d<T> for 5D 
• Similarly

– MdagMSystemSolverArray<T> for M✝M
– MdagMMultiSystemSolverArray<T> for shifted
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Qprop System Solvers
• Qprop-s are a special kind of system solver 

– solve for 1 component of a 4d quark propagator
• For 5D actions deal with 5D source construction and 4D 

projection post solve
• eg: DWFQprop, FermActQprop, ContFrac5DQprop

• QpropT-s are a 5D construction
– solve for 1 component of a 5D quark prop, but don't project 

down
• really this is just the same as LinOpSysSolverArray?
• eg: FermAct5DQprop<T>, PrecFermAct5DQprop<T>
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Choosing Implementations: Factories

• It is great to be able to code most of our code in terms of base 
classes, virtual functions and defaults

• However, somewhere the code must live for the implementations:
– e.g. 2 Flavor Clover Action, DWF Linear Operator, Omelyan 

2nd order Integrator etc.
• Various implementations can have different parameters:

– e.g. Wilson Fermions, vs. Clover Fermions (c_sw)
– e.g. Generic CG solver, vs.  solver from QUDA

• Need a uniform way, to create the various objects
– while allowing their implementations to vary 
– Textbook Object Oriented Construction Pattern: Factory
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What do we mean?
What we don’t want:

switch(solver_type) { 
case CG:

 invcg(M,x,y, params);
 break;

case BICG:
   invbicg(M,x,y,params);
   break;
case RELIABLE_BICG:
   invrelbicg(M,x,y,params);
   break;
// ... other case
default:
   // what’s sensible? CG?
   // cross fingers...
   invcg(M,x,y,params);

break;
};

•  Why is this bad ?
- everywhere we need a solver 
we may need to repeat the switch 
statement 
- adding a new solver can 
become painful: edit every 
switch statement 
- we would need a monster 
parameter structure, covering all 
possible solvers
- what is a sensible default?
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Object Factories Object Factories 

• Provide a uniform way to select and construct implementations of 
a given base class  

     
     <InvertParams>
          <invType>CG_INVERTER</invType>
          <RsdCG>1.0e-7</RsdCG>
          <MaxCG>1000</MaxCG>
      </InvertParams>

“CG_INVERTER”

theLinOpSystemSolverFactory

( “BICGSTAB_INVERTER”,  (*createBiCGStabInverter)()  )

( “CG_INVERTER”,  (*createCGInverter)()  )

Chroma::LinOpSystemSolver<> *

Key
parameters

in 
XMLReader

Product
(pointer to)
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Factory Advantages
• Encapsulate solver in a function-object (functor)

– Use a factory to make the object
– The created object knows what solver it is

•  no switch statement, just: (*solver)(out,in)
– The object can have its own parameters rather than one big 

parameter struct for all solvers.
– To add a new type of object (solver), one needs only to 

• add the source for the new type of object
• register in the relevant factory
• everywhere that kind of object was used before, will now be 

able to use the new object
– Contrast with old way: would have had to find every ‘switch’ 

statement with that object type and add a new case.
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Factory Implementation
• STL ‘map’ class used to create mapping between 

– a string (KEY) to identify which class to instantiate
– a function to create the object, given XML parameters
– the function must be ‘registered’ in the factory.

• We use an object factory implementation from the LOKI library 
(Alexandrescu et. al.)
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Registration Functions
 
//! Creation function. Lives in eoprec_clover_fermact.cc
WilsonTypeFermAct<LatticeFermion,
        multi1d<LatticeColorMatrix>, 
        multi1d<LatticeColorMatrix> >* createFermAct4D(XMLReader& xml_in,
                                                       const std::string& path)
{
      return new EvenOddPrecCloverFermAct(CreateFermStateEnv::reader(xml_in, path), 
                                          CloverFermActParams(xml_in, path));
}

const std::string name = "CLOVER";  // Name to use
static bool registered = false;     // set to true when registering

bool registerAll() 
{
  bool success = true; 
  if (! registered)  {
   success &= Chroma::TheWilsonTypeFermActFactory::Instance().registerObject(name, 
                                                              createFermAct4D);
       
   registered = true;
  }
  return success;
}
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Measurements
• Aim: Encapsulate measurements as objects (rather than functions)

– uniform interface
– can create from a ‘description’
– chroma application: a simple interpeter to cycle through these

• Very simple class: InlineMeasurement
• Has only 2 public methods:

– operator(update_no)  -- do the measurement
– getFrequency() -- how often should the measurement be done

• Originally from HMC when one didn’t want to measure on 
every trajectory
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Named Objects
• Measurement Tasks are discrete ‘objects’ 
• Useful to share data between multiple measurements:

– create a source in one task, and use it in another
• “Named Objects” were designed to do this.

– Have a global ‘store’ 
– Tasks can

• create objects, with a name (string)
• lookup/delete objects (using the name)

• Have special tasks (Measurements) to I/O named objects
– Divorces I/O from the measurements themseves
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Named Objects in Code and XML
eg: source creation: 

 TheNamedObjMap::Instance().create<LatticePropagator>(params.named_obj.source_id);
 TheNamedObjMap::Instance().getData<LatticePropagator>(params.named_obj.source_id) =
        quark_source;

 TheNamedObjMap::Instance().get(params.named_obj.source_id).setFileXML(file_xml);
 TheNamedObjMap::Instance().get(params.named_obj.source_id).setRecordXML(record_xml);

In XML:
<elem>
  <Name>MAKE_SOURCE</Name>
  ...
  <NamedObject>
    <source_id>sh_source</source_id>
  </NamedObject>
 </elem>
 <elem>
  <Name>PROPAGATOR</Name>
   ...
  <NamedObject>
    <source_id>sh_source</source_id>
    <prop_id>sh_prop_0</prop_id>
  </NamedObject>
</elem>

<elem>
 <Name>QIO_WRITE_NAMED_OBJECT</Name>
   ...
 <NamedObject>
  <object_id>sh_prop_0</object_id>
  <object_type>LatticePropagator</object_type>
 </NamedObject>
 <File>
  <file_name>./sh_prop_0</file_name>
  <file_volfmt>MULTIFILE</file_volfmt>
 </File>
</elem>

MAKE_SOURCE
creates object

Special “Measurement”
Writes named object
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Stopping point 
• Discussed

– Capturing mathematical structure with inheritance
–  some of the main Chroma class abstractions
– Measurements

• Discussed Factories, for creating instances of these
• Possible continuations

– QDP++ and Chroma and GPUs 
– Design Patterns in Chroma
– XML Writing Guide 
– Tutorials 2 and 3
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