
Chroma

Bálint Joó,
Scientific Computing Group

Jefferson Lab

Thursday, May 31, 2012

Chroma
• QDP++ covers ‘nuts and bolts’ for us

– provides lattice types/expressions
– hides parallelism

• Chroma provides the infrastructure for constructing LQCD
applications
– Components: Gauge And Fermion Actions, Solvers, MD etc.
– Higher Level:

• two full applications: chroma and hmc
• lots of measurement tasks with XML interface

• NB: This is chroma the LQCD code
– Not: Chroma(tm) the Lustre Filesystem Management software

from Whamcloud.

Thursday, May 31, 2012

Chroma will be 10 this year
• first check in is dated Dec 16, 2002
• Chroma is entering ‘middle-age’
• Structurally pretty stable

– mostly tweaks (new solvers etc)
– QUDA solver integration

• Another 10 years and Exascale?

As a result of the customer advocacy and an analysis by middle
management, the project requirements were modified to closely
match the requirements of the users and a more realistic schedule
was developed.

We judged the level of maturity of the code project to be
somewhere between CMM Level 2 and Level 3 in terms of the
processes and practices the Falcon code group is following[5].

The team has not had a formal CMM assessment, but has had
several internal and external audits.

4. Falcon Life Cycle
The FALCON code project lifetime is expected to be on the order
of 30 years (Figure 3). This is based on the experience with
similar projects at this institution. Indeed, some projects like
Falcon have had lifetimes of up to 45 years. The first part of the
life cycle was dedicated to development of the preliminary, initial
capability to solve the conservation equations without accurate
source terms or coefficients. This took about five years. Now that

capability is being tested. Further development will continue until
a production capability has been achieved with more accurate
source terms and coefficients. The production phase involves
heavy use and testing by the user community. During the
production phase, the code team will support the use of the code,
maintain the code, port it to new platforms, and develop and add

new capability as required by product engineers.

For similar projects at this institution, the ultimate life span of the
code is determined by user demand and the difficulty of

successively porting the code to new platforms. When a successor
can replace the older code, and the product engineers have made
the transition from the older code to the successor code, support
for the older code is stopped and it is “retired”. The development
of new capability then shifts to the successor code. The Falcon

project is in the process of displacing an older project with less
capability. The life-time of these projects is much longer than the
time between new platforms. Thus porting to the new platform
becomes much more important than extensive performance
optimization for a particular platform.

Like many computational simulations, the FALCON code project
has a strong element of research and development to ensure that
new algorithms are developed and successfully implemented. The
users also have needs that must be met if the code project is to be
successful. The adequacy of the models in the code can only be
determined as part of an intensive validation program. It was

difficult to draft a detailed list of requirements before the project
was begun or to specify a detailed schedule.

In the case of the Falcon project, senior institutional management
and the sponsor specified a set of requirements that would allow
them to “sell” the program to the funding sources. This is similar
to experiences in the Information Technology (IT) industry where
a marketing department identifies market opportunities, and then
signs up customers by promising a level of code capability that
outbids the competition. Then the software engineers must deliver
the promised capability. This contributes to over-promising the
capability that can be delivered within the defined schedule and
resource level[6, 7].

In the case of the Falcon project, the detailed schedule initially

specified by the sponsor and senior institutional management was
not based on the prior experience with similar codes or
quantitative estimates. Instead the schedule was based on when
the capability was desired. In addition, the sponsor and
institutional management chose a set of goals that appealed to the
funding agency but were not the highest priority for the ultimate
customers, the product engineers. The customers needed and
wanted a different set of capabilities. They thus had little interest
in the initial code project. Once it became clear that the schedule

was almost a factor of three too optimistic and that the initial
goals were not appropriate, the project goals were changed to
match the needs of the customers and a more realistic schedule
was developed.

5. Workflows and Tasks
The institution that managed the Falcon project has had decades
of experience developing and using similar (but less capable)

simulations. However, that experience was in serial development
(i.e. develop one capability and test it, then develop a second
capability and add it to the first, etc.). Serial code development
would have taken 20 years or more to achieve the desired
capability. The Falcon code project and others begun at the same
time planned to develop the major components in parallel to speed
up the overall development process (Figure 4). Component
development in parallel placed new and much greater demands on
project management issues since the code teams were four to five

times larger than in the past. It also called for better risk
management techniques. If many components are needed for the
full capability, one failure would double the overall development
time. This risk was realized for the Falcon project. A contract
support group did not deliver a key component. The Falcon team
has had to develop it. This has subtracted from the resources

Figure 3. Falcon Project Life Cycle. The small tic marks
denote 6 month release dates.

5 10 15 20 25 30 35
calendar time (years)

Falcon Project Life Cycle

 Initial

development

product
improvement

and

development

Production ,

product development

and user support phase

Continued product
testing (V&V) and

application by users

Retirement
user support

minimal development

minimal porting

serious

testing by
customers

major product releasesApril 2005

0

Figure 2. FALCON code project staffing and release
schedule.

4 5 6 7 8 1093210

calendar time (years)

Falcon Project Life Cycle and History

 Initial

development product improvement
and development

serious testing

by customers

major product

releases

Now

0

5

10

15

planned staffing
actual staffing

Milestones

Requirements set by

sponsor and institutional management

Expected life cycle of the Falcon code
D.E. Post, J.o.P Conf. Series, 125 (2008) 012090
(SciDAC’08 Seattle)

Thursday, May 31, 2012

Some Design Aims
• Try to capture mathematical structure, through class

structure
– Inheritance, virtual functions

• Use extensible techniques (Patterns)
– Avoid monster switch statements
– Use map/factory based creation

• Would like it to be easy to drive from external file
– Little ‘measurement’ interpreter (Command Pattern)

Thursday, May 31, 2012

F = X†ṀY

y = Mx

Capturing Mathematical Structure
• Demonstrate with Even Odd Preconditioning:

y = MxLinear Operator:
LinearOperator<T> :

virtual
void operator(T& y,
 const T& x,
 enum PlusMinus isign);
virtual const Subset& subset();

‘Differentiable’
Linear Operator:

DiffLinearOperator<T,P,Q> :
 virtual void operator(T& y,
 const T& x,
 enum PlusMinus isign);
 virtual const Subset& subset();
 virtual void deriv(P& F,
 const T& X,
 const T& Y,
 enum PlusMinus isign);

Thursday, May 31, 2012

S = Moo −MoeM
−1
ee Meo

�
Mee 0
0 S

�Schur Even Odd
Preconditioned
Linear Operator
EvenOddPrecLinearOperator<T,P,Q> :
 virtual void evenOddLinOp(T& y, const T& x, enum PlusMinus isign);

 virtual void oddEvenLinOp(T& y, const T& x, enum PlusMinus isign);

 virtual void oddOddLinOp(T& y, const T& x, enum PlusMinus isign);

 virtual void evenEvenLinOp(T& y, const T& x, enum PlusMinus isign);

 virtual evenEvenInvLinOp(T& y, const T& x, enum PlusMinus isign);

 virtual void operator()(T& y, const T& x, enum PlusMinus isign) {
 T tmp; oddEvenLinOp(tmp, x, isign);
 T tmp2; evenEvenInvLinOp(tmp2, tmp, isign);
 evenOddLinOp(tmp, tmp2, isign);
 oddOddLinOp(y, x, isign);
 y -= tmp;
 }

Default
Implementation

Thursday, May 31, 2012

Capturing mathematical structure
• Of course force term can also be done like this:

– ie: derivEvenEvenLinOp()
– derivOddEvenLinOp(), etc...
– then code the full deriv() in terms of these

• Structure also applies to things like quark prop calculation

• And HMC:

Mx = y
S xo = yo −MoeM

−1
ee ye

xe = M−1
ee (ye −Meoxo)

Solve on 1
checkerboard,
with modified

source

Reconstruct
on other

checkerboard.

S = 2 Tr Ln Mee − ψ†
o

�
S†S

�−1
ψo

Thursday, May 31, 2012

Parallel Inheritance Trees
• Capture ‘sameness of structure’ amongst different

components (Linear Operators, QProp solvers, Monomials
etc)

DiffLinearOperator

UnprecLinearOperator

EvenOddPrecConstDetLinearOperator

EvenOddPrecLogDetLinearOperator

TwoFlavorMonomial

UnprecTwoFlavorMonomial

EvenOddPrecConstDetTwoFlavorMonomial

EvenOddPrecLogDetTwoFlavorMonomial

Linear Operators Monomials

Thursday, May 31, 2012

Chroma Key Base Classes: HMC

AbsMonomial

AbsHamiltonian

AbsFieldState

AbsMDIntegrator

AbsHMCTrj

Monomials represent
actions

(e.g. 2 flavour, gauge etc.)
can compute the action
can compute MD forces

Hamiltonians compute the
energy from a list of

monomials

Integrators update gauge
fields and momenta using
force terms of Monomials

HMC Traj
updates a field state
using a Hamiltonian

and integrator

• Abstract means: templated on Gauge/Momentum types
• HMC written in terms of abstractions
• One needs concrete implementations as well of course.

Thursday, May 31, 2012

Fermion and Gauge States

GaugeBC CreateGaugeState GaugeAction GaugeState

Boundary
Conditions

Smearing +
Boundary Conds

S.createState(u)

S.getLinks()

Links with
smearing and

BCs

FermBC CreateFermState FermionAction FermState

S.getLinks()

Links with
smearing and

BCs

Encapsulate
Boundary Conditions & Smearing

Thursday, May 31, 2012

FermBCs

• Interface for applying fermionic BCs
• Managed/Used by FermionAction and other GaugeBCs and

FermBCs (eg Schroedinger Functional)
• Main memebrs:

– modifyU(u) – Apply boundaries to gauge field
– modifyF(psi) – Apply boundaries to fermion field
– zero(F) – Zero Force on boundary (eg Schroedinger

functional)

Thursday, May 31, 2012

Linear Operators

• BaseType for matrices
• Templated on Fermion Type
• Function Object (has overloaded operator())

 template<typename T>
 class LinearOperator
 {
 public:
 virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;

 virtual const Subset& subset() const = 0;

 // ... others omitted for lack of space
 };

PLUS apply M
MINUS apply M+

Know which subset
to act on

Source
Vector

Target
Vector

Thursday, May 31, 2012

System Solvers
• Attempt to encapsulate various inverter strategies

– Single systems: SystemSolver< FermionType >
– Multi-mass: MultiSystemSolver< FermionType >

SystemSolver<T> MultiSystemSolver<T>

LinOpSytemSolver<T>

MdagMSystemSolver<T>

LinOpMultiSystemSolver<T>

MdagMMultiSystemSolver<T>

template<typename T> class SystemSolver {
public:
 virtual SystemSolverResults_t operator()(T& psi, const T& chi) const=0;
 virtual const Subset& subset() const=0;
};
template<typename T> class MultiSystemSolver {
public:
 virtual SystemSolverResults_t operator()(multi1d<T>& psi, const multi1d<Real>& shifts,

 const multi1d<T>& chi) const=0;
 virtual const Subset& subset() const=0;
};

operator() - performs
solve

Thursday, May 31, 2012

FermionActions

• Manages related Linear Operators, States and Solvers
• Not “action” in the true sense, does not know about flavour

structure

Fermion Action

CreateFermState

FermState

createState()
linOp()
lMdagM()
qprop()
quarkProp()

LinearOperator (M+M)

LinearOperator (M)

SystemSolver

Thursday, May 31, 2012

Using Linear Operator

// Raw Gauge Field
multi1d<LatticeColorMatrix> u(Nd);
typedef QDP::LatticeFermion T;
typedef QDP::multi1d<LatticeColorMatrix> P;
typedef QDP::multi1d<LatticeColorMatrix> Q;
FermionAction<T,P,Q>& S = ...;

Handle< FermState<T,P,Q> > state(S.createState(u));

Handle<LinearOperator<T> > M(S.linOp(state)) ;

LatticeFermion y, x;
gaussian(x);

(*M)(y, x, PLUS);

Create state
for Fermion

Kernel

Create
LinearOperator

(fix in links)

De-reference Handle
and apply lin. op: y = M x

• Created by FermionAction (factory method)
• Typical Use Pattern:

Thursday, May 31, 2012

SystemSolverArray-s

• Similar Idea to SystemSolvers, but 5D fermions
• LinOpSystemSolverArray<T> to solve with M

– works on multi1d<T> for 5D
• Similarly

– MdagMSystemSolverArray<T> for M✝M
– MdagMMultiSystemSolverArray<T> for shifted

Thursday, May 31, 2012

Qprop System Solvers
• Qprop-s are a special kind of system solver

– solve for 1 component of a 4d quark propagator
• For 5D actions deal with 5D source construction and 4D

projection post solve
• eg: DWFQprop, FermActQprop, ContFrac5DQprop

• QpropT-s are a 5D construction
– solve for 1 component of a 5D quark prop, but don't project

down
• really this is just the same as LinOpSysSolverArray?
• eg: FermAct5DQprop<T>, PrecFermAct5DQprop<T>

Thursday, May 31, 2012

Choosing Implementations: Factories

• It is great to be able to code most of our code in terms of base
classes, virtual functions and defaults

• However, somewhere the code must live for the implementations:
– e.g. 2 Flavor Clover Action, DWF Linear Operator, Omelyan

2nd order Integrator etc.
• Various implementations can have different parameters:

– e.g. Wilson Fermions, vs. Clover Fermions (c_sw)
– e.g. Generic CG solver, vs. solver from QUDA

• Need a uniform way, to create the various objects
– while allowing their implementations to vary
– Textbook Object Oriented Construction Pattern: Factory

Thursday, May 31, 2012

What do we mean?
What we don’t want:

switch(solver_type) {
case CG:

 invcg(M,x,y, params);
 break;

case BICG:
 invbicg(M,x,y,params);
 break;
case RELIABLE_BICG:
 invrelbicg(M,x,y,params);
 break;
// ... other case
default:
 // what’s sensible? CG?
 // cross fingers...
 invcg(M,x,y,params);

break;
};

• Why is this bad ?
- everywhere we need a solver
we may need to repeat the switch
statement
- adding a new solver can
become painful: edit every
switch statement
- we would need a monster
parameter structure, covering all
possible solvers
- what is a sensible default?

Thursday, May 31, 2012

Object Factories Object Factories

• Provide a uniform way to select and construct implementations of
a given base class

 <InvertParams>
 <invType>CG_INVERTER</invType>
 <RsdCG>1.0e-7</RsdCG>
 <MaxCG>1000</MaxCG>
 </InvertParams>

“CG_INVERTER”

theLinOpSystemSolverFactory

(“BICGSTAB_INVERTER”, (*createBiCGStabInverter)())

(“CG_INVERTER”, (*createCGInverter)())

Chroma::LinOpSystemSolver<> *

Key
parameters

in
XMLReader

Product
(pointer to)

Thursday, May 31, 2012

Factory Advantages
• Encapsulate solver in a function-object (functor)

– Use a factory to make the object
– The created object knows what solver it is

• no switch statement, just: (*solver)(out,in)
– The object can have its own parameters rather than one big

parameter struct for all solvers.
– To add a new type of object (solver), one needs only to

• add the source for the new type of object
• register in the relevant factory
• everywhere that kind of object was used before, will now be

able to use the new object
– Contrast with old way: would have had to find every ‘switch’

statement with that object type and add a new case.

Thursday, May 31, 2012

Factory Implementation
• STL ‘map’ class used to create mapping between

– a string (KEY) to identify which class to instantiate
– a function to create the object, given XML parameters
– the function must be ‘registered’ in the factory.

• We use an object factory implementation from the LOKI library
(Alexandrescu et. al.)

Thursday, May 31, 2012

Registration Functions

//! Creation function. Lives in eoprec_clover_fermact.cc
WilsonTypeFermAct<LatticeFermion,
 multi1d<LatticeColorMatrix>,
 multi1d<LatticeColorMatrix> >* createFermAct4D(XMLReader& xml_in,
 const std::string& path)
{
 return new EvenOddPrecCloverFermAct(CreateFermStateEnv::reader(xml_in, path),
 CloverFermActParams(xml_in, path));
}

const std::string name = "CLOVER"; // Name to use
static bool registered = false; // set to true when registering

bool registerAll()
{
 bool success = true;
 if (! registered) {
 success &= Chroma::TheWilsonTypeFermActFactory::Instance().registerObject(name,
 createFermAct4D);

 registered = true;
 }
 return success;
}

Thursday, May 31, 2012

Measurements
• Aim: Encapsulate measurements as objects (rather than functions)

– uniform interface
– can create from a ‘description’
– chroma application: a simple interpeter to cycle through these

• Very simple class: InlineMeasurement
• Has only 2 public methods:

– operator(update_no) -- do the measurement
– getFrequency() -- how often should the measurement be done

• Originally from HMC when one didn’t want to measure on
every trajectory

Thursday, May 31, 2012

Named Objects
• Measurement Tasks are discrete ‘objects’
• Useful to share data between multiple measurements:

– create a source in one task, and use it in another
• “Named Objects” were designed to do this.

– Have a global ‘store’
– Tasks can

• create objects, with a name (string)
• lookup/delete objects (using the name)

• Have special tasks (Measurements) to I/O named objects
– Divorces I/O from the measurements themseves

Thursday, May 31, 2012

Named Objects in Code and XML
eg: source creation:

 TheNamedObjMap::Instance().create<LatticePropagator>(params.named_obj.source_id);
 TheNamedObjMap::Instance().getData<LatticePropagator>(params.named_obj.source_id) =
 quark_source;

 TheNamedObjMap::Instance().get(params.named_obj.source_id).setFileXML(file_xml);
 TheNamedObjMap::Instance().get(params.named_obj.source_id).setRecordXML(record_xml);

In XML:
<elem>
 <Name>MAKE_SOURCE</Name>
 ...
 <NamedObject>
 <source_id>sh_source</source_id>
 </NamedObject>
 </elem>
 <elem>
 <Name>PROPAGATOR</Name>
 ...
 <NamedObject>
 <source_id>sh_source</source_id>
 <prop_id>sh_prop_0</prop_id>
 </NamedObject>
</elem>

<elem>
 <Name>QIO_WRITE_NAMED_OBJECT</Name>
 ...
 <NamedObject>
 <object_id>sh_prop_0</object_id>
 <object_type>LatticePropagator</object_type>
 </NamedObject>
 <File>
 <file_name>./sh_prop_0</file_name>
 <file_volfmt>MULTIFILE</file_volfmt>
 </File>
</elem>

MAKE_SOURCE
creates object

Special “Measurement”
Writes named object

Thursday, May 31, 2012

Stopping point
• Discussed

– Capturing mathematical structure with inheritance
– some of the main Chroma class abstractions
– Measurements

• Discussed Factories, for creating instances of these
• Possible continuations

– QDP++ and Chroma and GPUs
– Design Patterns in Chroma
– XML Writing Guide
– Tutorials 2 and 3

Thursday, May 31, 2012

