Chroma and GPUs

Balint Joo,
Scientific Computing Group

Jeftferson Lab
+

QDP-JIT, Frank Winter, University of Edinburgh

Thomas Jefferson National Accelerator Facili \
.geffegon Lab Y @ @JSA
Thursday, May 31, 2012

Chroma and GPUs

e GPU Computing promises a way to get lots of FLOPs
— both in terms of FLOPS/$ (FLOPS/Euro)
— and in terms of FLOPS/Watt
— Mike’s lectures cover how to program NVIDIA GPUs
e [I’d like to touch on a couple points of GPU computing with Chroma
— GPU Systems: Bottlenecks?
— Integration with QUDA in terms of Solvers
— Amdahl’s Law : Yes! You get to hear it again :)
— Working towards reducing Amdahl’s law using QDP-JIT
 This last bit should really be given by Frank :)

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

Typical Cluster Set Up

PCle 2
‘Network’
8+8 GB/s |

per x16 bus

multicore CPU: ~5GB/s
Westmere EX, 6 cores, (40Gp/s)
3.3 GHz -> 159 GFlops

e GPU Mem. B/W/ CPU Mem. B/W ~6.9x

GPU Peak Flops (SP) / CPU Peak Flops(SP) ~ 8.4x
PCle Gen2 serious bottleneck for multi-GPU

e Changed slightly with SandyBridge/Interlagos, PCle3

— but not qualitatively JLab 10G cluster
‘!e ff s>on Lab Thomas Jefferson National Accelerator Facility @ @JSA

Thursday, May 31, 2012

Improvements

PCle3: effectively doubles Bandwidth

* Recent processors: Faster CPUs

GPU Direct: more efficient use of PCle by GPUs
— peer to peer amongst GPUs
— GPU to Fabric without using hosts

e Can argue: same latency / BW as if regular host was
doing the communications

Can the power of GPUs be leveraged from Chroma?

i} Thomas Jefferson National Accelerator Facili
.!effegon Lab v

@&

Thursday, May 31, 2012

Chroma and QUDA

e Mike will have discussed QUDA i1n his lectures.
* A library for QCD Calculations using CUDA
— provide solvers (for Wilson/Clover/Twisted Mass/Staggered etc)
e and by extension, some linear operators
— provide force terms (primarily for Improved Staggered for now)
— provides a gauge action
— DWF 1s work 1n progress.
— Solvers are very fast (multi-precision and other techniques)
e Chroma integration:
— Integrated Wilson and Clover Solvers
» For propagator calculations (M x = b solves)
e and for use in force calculations (M*M x = b solves)

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

How do I build it?

e Turnkey builds available in the package_xxx.tar.gz style:

— package-quda.tar.gz

— For now, contact me if you need these (bjoo AT jlab.org)
* exist for general clusters
* CrayXK systems

e the variations are primarily in the env.sh file

Thomas Jefferson National Accelerator Facili)
.geff920n Lab Y @ @JSA
Thursday, May 31, 2012

How does it work?

* A new solver types. Their XML <invType>-s are:
— QUDA_CLOVER_INVERTER
— QUDA_WILSON_INVERTER
e These map as appropriate to SystemSolver-s in Chroma

e defined in /lib/actions/ferm/invert/quda_solvers/

Thomas Jefferson National Accelerator Facili)
.geff920n Lab Y @ @JSA
Thursday, May 31, 2012

The XML File

<InvertParam> f/f
<invType>QUDA CLOVER INVERTER</invType> Repeat these. Must be the

<Cloverparams> same as in the preceding
<Mass>0.0</Mass>
<clovCoeffR>1</clovCoef fR> FermionAction
<clovCoeffT>1</clovCoeffT>
<AnisoParam/>

</CloverParams> ‘\\

BC Info needs to be known

(even if folded into the gauge
<RsdTarget>1.0e-7</RsdTarget> .
<Delta>1.0e1</Delta> field, but gets lost when using

<MaxIter>10000</MaxIter> 2-row compression)
<SolverType>BICGSTAB</SolverType>
<Verbose>true</Verbose>

<AsymmetricLinop>false</AsymmetricLinop>
<CudaReconstruct>RECONS_12</CudaReconstruztit:::::::::::j/f
<CudaSloppyPrecision>HALF</CudaSloppyPrecision>

<CudaSloppyReconstruct>RECONS 12</CudaSloppyReconstruct> Select preconditioning style
<AxialGaugeFix>false</AxialGaugeFix> :
<AutotuneDslash>true</AutotuneDslash> true: Aoo - Doe A lee Deo

false 1 -A- 1 ooDoeA_ 1ee])eo

<AntiPeriodicT>true</AntiPeriodicT>

<GCRInnerParams/>
</InvertParams> \\

i} Thomas Jefferson National Accelerator Facili)
.geffegon Lab Y @ @JSA
Thursday, May 31, 2012

<InvertParam>

</InvertParams>

.!effegon Lab

The XML File

<invType>QUDA_CLOVER INVERTER</invType> Delta controls mixed precision:

<CloverParams/>

<AntiPeriodicT>true</AntiPeriodicT> Reduced Precision Solver should drop
the residuum by this Delta factor

<RsdTarget>1.0e-7</RsdTarget>

<Delta>1l.0e-1</Delta>

<MaxIter>10000</MaxIter>

<SolverType>BICGSTAB</SolverType> BICGSTAB s CG, GCR

<Verbose>true</Verbose>
<AsymmetricLinop>false</AsymmetricLinop>

<CudaReconstruct>RECONS 12</CudaReconstruct> < QUDA Settings
<CudaSloppyPrecision>HALF</CudaSloppyPrecision>
<CudaSloppyReconstruct>RECONS_12</CudaSloppyReconstruct>
<AxialGaugeFix>false</AxialGaugeFix>

<AutotuneDslash>true</AutotuneDslash> < Enable Autotuning

<GCRInnerParams>
<RsdSloppy>1.0e-1</RsdSloppy>
<MaxIterSloppy>10</MaxIterSloppy>
<NKrylov>10</NKrylov>

<VerboseP>true</VerboseP> Inner solver |l fOI‘, GCR
<InvTypeSloppy>MR</InvTypeSloppy> If not using GCR one should
</GCRInnerParams> omit this group (Chroma

should generate safe defaults)

L %

VA

|

Thomas Jefferson National Accelerator Facility

Thursday, May 31, 2012

Some Notes

e Typically in Chroma, for a solver we generate a linear operator, using
the <FermionAction> XML

— QUDA doesn’t use our linear operator , but has its own

— there 1s no way in Chroma of interrogating parameters from the
instantiated linear operator

* => We need to repeat the parameters for QUDA

e RECONS_12 (2 row reunitarization) cannot reconstruct the
antiperiodic boundary (just a - sign on those links)

— Only periodic/antiperiodic boundaries allowed in QUDA
e cudaPrecision (non-sloppy) is inferred from build precision

e setting <Verbose> to true will display the solver convergence history

' Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ @JSA
Thursday, May 31, 2012

Autotuning

e QUDA will autotune the kernels used in your program, for optimal
performance

— 1t will try various block/grid size combinations and pick best one
— but the first solve (when the tuning is done) will be slow.
— QUDA will write out optimal parameters to a file on exit
— this way you won’t need to pay the tuning penalty more than once
— specity file for autotuning params with env. var:

e QUDA_RESOURCE_PATH

 should point to a directory

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

Some gotcha’s

e For CUDA version < CUDA 4.1 you must set env var
— CUDA_NIC_INTEROP=1 (GPU direct)
— versions 4.1 and higher don’t need this

e For chroma you must always set the -geom command line
argument -- to trip QMP into defining a logical topology

—evenifthe gridis-geom 1 111
* You are allowed to run multiple host OpenMP threads
— 1f chroma was built for mixed OpenMP/MPI operation

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

Very recent results from TitanDeyv

Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

100 Tflops T
64—
32
16 =
8 s
o
-
= 4
Z
7 2
s
=%
=) 1 =
et
=
05
(.25 H B—8 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBiCGStab solver
0.125 H #—% Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
G—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
0.0625 H Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain -
Decomposed preconditioner
1 1 i 1 1 i s) | i l
16 32 64 128 256 512 1024 2048 4096 8192
Interlagos Sockets (16 core/socket)

.geftg?son Lab

Thomas Jefferson National Accelerator Facility

@

Thursday, May 31, 2012

Can I use QUDA in HMC

e In principle, yes. The solvers are ‘hooked up’ also as
MdagMSystemSolver (and MdagMSystemSolverMulti)

e In practice, the benefits from using just QUDA solvers will depend
on:
— your lattice size
e If it is too small, QUDA may not get good throughput
e If it is too big, the CPU can’t keep up with the non solver stuff

e Preliminary results with 2 flavor Wilson indicate cross-over
point (for the particular lattice size and machine tried)

— machine balance:
e too many GPUs per CPU: Amdahl’s law

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

Stopping Point

e Discussed the interfacing of Chroma + QUDA

e Went through the XML to run the QUDA solver from
within Chroma

e Discussed naive implications for HMC

e Continuations:
— Moving more of Chroma to the GPU: QDP-JIT

Thomas Jefferson National Accelerator Facili)
.geff920n Lab Y @ @JSA
Thursday, May 31, 2012

Amdahl’s Law

“The speedup of the application1s ~ ,
limited by the unaccelerated portion™

— P=0.6
— P=(.7
app = L O |— p=08
— P — P=09
(1-P)+ S i — P=0.95 i
Nl | | p—
A Accelerate by 6x Approx I |
- GPU/CPU I |
T Mem B/W | |
£ 6 Ratio (6.9x) ! —
(1-P) - .
o) 40% - -
£
— 4 ——
c
§ 50%1 i
=
8 y o) 4 .
Y = | | Approx
X 60% | 1| GPU/CPU
* * FLOPS .
Ratio (8.4x)
ol bt T
. . 2 4 6 8 10 12 14 16 18 20
Original Accelerated S
.!effégon Lab Thomas Jefferson National Accelerator Facility @ @_]SA

Thursday, May 31, 2012

What does Amdahl’s law mean for me?

* When using QUDA, you may find that time spent in the solver is
longer the bottleneck

— Gauge generation: Solver takes 50-70% of time: max S ~ 3x
— Source Smearing, Sink Smearing in prop calculations
 But how do we get those parts onto the GPU?
e Solution: Move QDP++ to the GPU
— expect greatest benefit in systems with high GPU/CPU ratio
— since the CPU will essentially be 1gnored (wasted)

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

What are the issues

e The primary ones are:
— getting your expressions onto the GPU
— memory movement between host and device

— memory layouts and coalescing

Thomas Jefferson National Accelerator Facili \
.geffegon Lab Y @ @JSA
Thursday, May 31, 2012

Reminder about Expression Templates

* Everything 1s ‘controlled’ from the host (accelerator model)

e operator+() (on host) creates expression.
e expression has references to the leaves
e expression has ‘code’ to evaluate on the host.

Overload operator+()

XTy,

QDPExpr<RHS, C> /

C= container for return type for expression X

Thomas Jefferson National Accelerator Facility

.!effegon Lab

Node Class:
contains code for
evaluating this
node from
subtrees/leaves.
e.g. overloaded
operator+()

Leaves:
in this
case two
lattice
vectors

Thursday, May 31, 2012

What must happen on evaluation

» evaluate() takes a reference to an expression: QDPExpr<RHS, T>& rhs
e The operations to be carried out are in the RHS type
e Regular C++ compiler generates code for the RHS
but knows nothing about CUDA?
how does the code for the node become a CUDA kernel?
 How does the data move to the device?

template<class T, class Tl, class Op, class RHS> / \

volid evaluate(OLattice<T>& dst, const Op& op,
QODPExpr<RHS,OLattice<T1> >& rhs)
{ sites
forall sites i do:
op(dst.elem(i),

ForEach(rhs, EvalLeafl(i), OpCombine()));
ForEach: EvalLeafl functor: OpCombine functor:
recursive tree traversal selects which site calls code in
to work with node to evaluate its X y
subtrees
J Thomas Jefferson National Accelerator Facili 5 |
.geffegon Lab ty @ JSA

Thursday, May 31, 2012

Dynamic (Just In Time) compilation

 NB: nvce can deal with Expression Templates
— but these need to live in the source for the kernels.
* So the problem can be refined:

— for a QDPExpr<RHS,T>, which 1s ‘lattice wide’ on the host we
must generate CUDA kernels which contain code for ‘body’ of
the evaluate() site loop on the host

e Turns out, that judicious use of the ForEach() can perform this
transformation at run-time (when evaluate is called)

e So, the call to evaluate() writes the kernel for us

e The technique of writing/building/linking code on the fly, 1s called
dynamic compilation or Just In Time compilation (JIT)

' Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ @JSA
Thursday, May 31, 2012

A Sketch of the Idea

__device

“Effective Host Code’’: void kernel(...)

{

(after ET’s do their magic) int i = ...

template<>
void evaluate(...)
{
for(sites ..) {
SU3Mat a=arg a[i];
SU3Mat b=arg b[i];
res[i] = a * b;

}

.!effegon Lab

SU3Mat a=arg a[i];
Su3Mat b=arg b[i]; = '
res[i] = a * b;

}

template<>
void evaluate(...)
{
if(!generated) {
generateKernel();
}
if (!compiled) {
compileKernel();
}
if (!loaded) {
loadKernel();
}
ensureLeavesAreOnDevice();
setupGrid();
kernel<<< ... >>>()

}
Thomas Jefferson National Accelerator Facility @ @JSA

Thursday, May 31, 2012

Implementing QDP-JIT

e QDP-JIT : development lead by Frank Winter
— Use PETE tree traversal to write the kernels and C++ callers
— use ‘shell()’ to launch nvce compiler, and build kernels
— use ‘ldopen()’ library to load .o files
* JIT only once, then keep kernels for successive runs
e autotune CUDA block sizes (log tuned parameters)
— Implement a special memory pool for allocations
 track whether memory is on host, or GPU
 ensure operands for kernels are on GPU when needed
e cache management (spill data to CPU if necessary)
 QUDA integration
— QUDA should use QDP-JIT memory pool

' Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ @JSA
Thursday, May 31, 2012

Compilation

e Get 1t from the GIT repo:
— git clone --recursive git://git.jlab.org/pub/lattice/usqcd/qdp-jit.git
— ¢d qdp-jit ; autorecont

GPU Specific options
— --enable-gpu : turns on GPUs
— --enable-gpuarch=sm20 : Fermi
— --with-cuda=<cuda location>
— --enable-cpuarch=x86_64
e Helps to turn off SSE etc for QDP++/Chroma
e Compile QUDA after QDP-JIT
— --enable-qdp-jit : Tell QUDA to use QDP-JIT memory pool
— --with-qdp=<location of QDP-JIT installation>

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

Running

* Run time environment variables:
— QDP_TEMP=<directory>
e directory for temporary files/JI'T-ed kernels
— QUDA_RESOURCE_PATH=<directory>
 directory for autotuning databases (same as used by QUDA)
 Run time command line options
— -poolsize <size>
e Size of memory pool can e.g. “4.5g”
— -maxpoolelement <size>
e Size of biggest element to put in pool
— -qudadynamic 0/1
e Whether QUDA should use the pool (0) or not (1)

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

Beating Down Amdahl’s Law

U
U
o

(8,1
o
o

Execution time of XML measurements [s]

Ul
o
T

Benchmark Measurements Chroma

450

|| =3 Hadron spectrum /ﬁ
1 Snk Smearing A

4001

3501

3001

2501

2001

=

ul

o
T

=

o

o
T

ccelerate
-|C—1 Propagator solver only
T Src Smearing using QUDA
Library:
(| ~2x speedup
Accelerate (P~0.52, S~14x)
all of \/—/
QDP++:
~10x
speedup

A

OQDP:GPU,QUDA

QDP:CPU,QUDA

| (http:// github.com/fwinter/q dp)

e Results from Frank Winter’s talk at Autumn StrongNET meeting (Trento, 2011)

e QUDA alone only gave ~2x speedup on full application

e QUDA + moving all of QDP++ to GPU resulted in ~10x speedup

e See also: F. Winter "Accelerating QDP++ using GPUs" arXiv:1105:2279[hep-lat]

.!effegon Lab

Thomas Jefferson National Accelerator Facility

Thursday, May 31, 2012

http://www.physik.uni-regensburg.de/strongnet/2011/documents/winter.pdf
http://www.physik.uni-regensburg.de/strongnet/2011/documents/winter.pdf
http://arxiv.org/abs/1105.2279
http://arxiv.org/abs/1105.2279
https://github.com/fwinter/qdp
https://github.com/fwinter/qdp

4096

2048

,_.
()
o
N

512

Time for trajectory (sec)

256

128

2 Flavor Wilson HMC

QDP-JIT+Chroma+QUDA, TitanDev @ ORNL
i I I | | | |

PRELIMINARY

Significant
gain from
QDP-JIT

" Lattice Size: 323x96
- GaugeAction + TwoFlavor + Hasenbusch

G—© Chroma (CPU only)
31 Chroma(CPU) + QUDA Solvers |4
>— Chroma(QDP-JIT) + QUDA

Sublattice/GPU
1S too small

4

.!effegon Lab

8

16 32 64
number of XK6 nodes

Thomas Jefferson National Accelerator Facility

128

Time: Lower is better

<

@&

Thursday, May 31, 2012

Comments

e Chroma(CPU) + QUDA scales a lot better at the moment
— more like straight Chroma(CPU)
— cause: communications (e.g. in Gauge Forces)
 CPU communicates directly to Gemini via HT
* GPU has to go through PCle?2 first
e Will become much better with GPUDirect (and its Cray variant)
e Lattice Sizes very small in this case
— GPU needs to be able to work in throughput mode
— Use larger lattices (we want to do 483x512 anyway)
e QDP-JIT leaves CPU more or less idle (once JI'T-ing is complete)
e For machines that can’t JIT (e.g. Cray Back-End compute nodes)
— transfer kernel .cu files from QDP_TEMP, and recompile

' Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ @JSA
Thursday, May 31, 2012

Stopping Point

e Discussed How to Interface QUDA + Chroma
— how to set up XML files for QUDA Solvers
e Discussed Amdahl’s law and its implications
* Discussed Implementing QDP++ on GPUs using JIT compilation
e Discussed Building/Running with QDP-JIT

e Discussed current status of running HMC on GPU based machines

e Possible continuations
— Tutorial / Demonstration of QDP-JIT + Chroma + QUDA
— General discussion

e ¢.g. Templates, Design Patterns

] Thomas Jefferson National Accelerator Facili 5 3
.geffegon Lab Y @ E‘JSA
Thursday, May 31, 2012

