1

QDP++ Data Parallel Interface for QCD
Version 1.24.1

Robert G. Edwards
SciDAC Software Coordinating Committee

June 15, 2007

Introduction

This is a user’s guide for the C++ binding for the QDP Data Parallel Applications
Programmer Interface developed under the auspices of the U.S. Department of Energy
Scientific Discovery through Advanced Computing (SciDAC) program.

The QDP Level 2 API has the following features:

2

Provides data parallel operations (logically SIMD) on all sites across the lattice
or subsets of these sites.

Operates on lattice objects, which have an implementation-dependent data lay-
out that is not visible above this API.

Hides details of how the implementation maps onto a given architecture, namely
how the logical problem grid (i.e. lattice) is mapped onto the machine archi-
tecture.

Allows asynchronous (non-blocking) shifts of lattice level objects over any per-
mutation map of sites onto sites. However, from the user’s view these instruc-
tions appear blocking and in fact may be so in some implementation.

Provides broadcast operations (filling a lattice quantity from a scalar value(s)),
global reduction operations, and lattice-wide operations on various data-type
primitives, such as matrices, vectors, and tensor products of matrices (propa-
gators).

Operator syntax that support complex expression constructions.

Datatypes

The N, dimensional lattice consists of all the space-time sites in the problem space.
Lattice data are fields on these sites. A data primitive describes data on a single

site. The lattice fields consist of the primitives over all sites. We do not define data
types restricted to a subset of the lattice — rather, lattice fields occupy the entire
lattice. The primitive types at each site are represented as the (tensor) product space
of, for example, a vector space over color components with a vector space over spin
components and complex valued elements.

2.1 Type Structure

Generically objects transform under different spaces with a tensor product structure
as shown below:

Lattice Color Spin Complexity
Gauge fields: Lattice ® Matrix(Nc) ® Scalar ® Complex
Fermions : Lattice ® Vector(Nc) ® Vector(Ns) ® Complex
Scalars : Scalar ® Scalar & Scalar ® Scalar
Propagators : Lattice ® Matrix(Nc) ® Matrix(Ns) ® Complex
Gamma : Scalar ® Scalar ® Matrix(Ns) ® Complex

Nd is the number of space-time dimensions
Nc is the dimension of the color vector space
Ns is the dimension of the spin vector space

Gauge fields can left-multiply fermions via color matrix times color vector but is
diagonal in spin space (spin scalar times spin vector). A gamma matrix can right-
multiply a propagator (spin matrix times spin matrix) but is diagonal in color space
(color matrix times color scalar).

Types in the QDP interface are parameterized by a variety of types including;:

o Word type: int, float, double, bool. Basic machine types.

e Reality type: complex or scalar. This is where the idea of a complex number
lives.

e Primitive type: scalar, vector, matrix, etc. This is where the concept of a gauge
or spin field lives. There can be many more types here.

e [nner grid type: scalar or lattice. Supports vector style architectures.

e Quter grid type: scalar or lattice. Supports super-scalar style architectures.
In combination with Inner grid can support a mixed mode like a super-scalar
architecture with short length vector instructions.

There are template classes for each of the type variants listed above. The interface
relies heavily on templates for composition - there is very little inheritance. The basic
objects are constructed (at the users choice) by compositions like the following:

typedef OLattice<PScalar<PColorMatrix<RComplex<float>, Nc> > > LatticeColorMatrix
typedef OLattice<PSpinVector<PColorVector<RComplex<float>, Nc>, Ns> > LatticeFermion

The classes PScalar, PSpinVector, PColorMatrix, PColorVector are all subtypes of a
primitive type. The relative ordering of the classes is important. It is simply a user
convention that spin is used as the second index (second level of type composition)
and color is the third. The ordering of types can be changed. From looking at the
types one can immediately decide what operations among objects makes sense.

2.2 Generic Names

The linear algebra portion of the QDP API is designed to resemble the functionality
that is available in the Level 1 QLA API and the C Level QDP API. Thus the
datatypes and function naming conventions are similar. Predefined names for some
generic lattice field datatypes are listed in the table below. Because the API is based
heavily on templates, the possible types allowed is much larger than listed below.

name description
LatticeReal real

LatticeComplex complex

LatticeInt integer
LatticeColorMatrix N. x N. complex matrix
LatticeFermion N spin, N, color spinor
LatticeHalfFermion two-spin, N, color spinor

LatticeDiracFermion four-spin, N, color spinor

LatticeStaggeredFermion
LatticeDiracPropagator
LatticeStaggeredPropagator

one-spin, N, color spinor
4N. x 4N, complex matrix
N. x N. complex matrix

LatticeSeed implementation dependent

Single site (lattice wide constant fields) versions of types exist without the Lattice
preprended. All types and operations defined for QDP live within a C++ namespace
called QDP thus ensuring no type conflicts with other namespaces.

2.3 Specific Types for Color and Precision

According to the chosen color and precision, names for specific floating point types
are constructed from names for generic types. Thus LatticeColorMatrix becomes
LatticeColorMatrix PC, where the precision P is D or F according to the table below

abbreviation | description
D double precision
F single precision

and C'is 2, 3, or some arbitrary N, if color is a consideration. Note, the value of N is
an arbitrary compile time constant.

If the datatype carries no color, the color label is omitted. Also, if the number of
color components is the same as the compile time constant, then the color label can
be omitted. Integers also have no precision label. The specification of precision and
number of colors is not needed for functions because of overloading.

For example, the type
LatticeDiracFermionF3

describes a lattice quantity of single-precision four-spin, three-color spinor field.

2.4 Color and Precision Uniformity

The only place that the number of color or spin components occur is through instance
of the global constant variables N., and Ns. These are only directly used in the typedef
constructions of user defined types. Nothing restricts a user from constructing types
for other number of colors. In fact, the use of V. in the construction of user defined
types is simply a convenience for the user, and as such a user can use any integer
that is reasonable. The API merely requires that the types used in operations are
conforming.

However, in standard coding practice it is assumed that a user keeps one of the
precision, color, and spin options in force throughout the compilation. So as a rule all
functions in the interface take operands of the same precision, color, and number of
spin components. As with data type names, function names come in generic color-,
spin- and precision-specific forms, as described in the next section. Exceptions to
this rule are functions that explicitly convert from double to single precision and vice
versa. If the user choose to adopt color and precision uniformity, then all variables
can be defined with generic types and all functions accessed through generic names.
The prevailing color is defined through the compile time constant N.. The interface
automatically translates data type names and function names to the appropriate spe-
cific type names through typedefs. With such a scheme and careful coding, changing
only the compile time N, and the QDP library converts code from one color and
precision choice to another.

2.5 Breaking Color and Precision Uniformity

It is permissible for a user to mix precision and color choices. This is done by declaring
variables with specific type names, using functions with specific names, and making
appropriate precision conversions when needed.

3 QDP Functions

The QDP functions are grouped into the following categories:
1. Entry and exit from QDP
2. Layout utilities
3. Data parallel functions
4. Data management utilities
5. Subset definition
6. Shift creation
7. 1/O utilities

8. Temporary exit and reentry

3.1 Entry and exit from QDP

QDP must be initialized before any other routine can be used. The initialization
is broken into two steps — initializing the underlying hardware and initializing the
layout.

Initialization of QDP

Prototype | void QDP_initialize(int *argc, char **xargv)
Purpose Places the hardware into a known state.
Example | QDP_initialize();

This routine will be responsible for initializing any hardware like the physical layer of
the message passing system. For compatibility with QMP, the addresses of the main
programs argc and argv must be passed. They may be modified.

Shutdown of QDP

Prototype | void QDP_finalize()
Purpose Shutdown QDP.
Example | QDP_finalize();

This call provides for an orderly shutdown of QDP. It is called by all nodes. It
concludes all communications, does housekeeping, if needed and performs a barrier
wait for all nodes. Then it returns control to the calling process.

Panic exit from QDP

Prototype | void QDP_abort(int status)
Purpose Panic shutdown of the process.
Example | QDP_abort(1);

This routine may be called by one or more nodes. It sends kill signals to all nodes
and exits with exit status status.

Entry into QDP

Prototype | void Layout: :create()
Purpose Starts QDP with layout parameters in Layout.
Example | Layout::create();

The routine Layout: : create () is called once by all nodes and starts QDP operations.
It calls the layout routine with the parameters set in the namespace Layout specifying
the layout. The layout is discussed in Section 3.2.

This step is separated from the QDP_initialize() above so layout parameters
can be read and broadcasted to the nodes. Otherwise the layout parameters have to
be set from the environment or fixed in the compilation.

Exit from QDP

Prototype | void Layout: :destroy()
Purpose Exits QDP.
Example | Layout: :destroy();

This call provides for an orderly exit from QDP. It is called by all nodes. It concludes
all communications, does housekeeping, if needed and performs a barrier wait for all
nodes. The communication layer is not finalized.

3.2 Layout utilities

Routines for constructing the layout are collected in the namespace Layout. The
setter and getter routines provide a way to set parameters like the lattice size.

The layout creation function determines which nodes get which lattice sites and
in what linear order the sites are stored. The Layout namespace has entry points
that allow a user to inquire about the lattice layout to facilitate accessing single
site data from a QDP lattice field. For code written entirely with other QDP calls,
these routines may be ignored by the user, with the exception of the useful routine
latticeCoordinate. However, if a user removes data from a QDP lattice object (see
expose or extract) and wishes to manipulate the data on a site-by-site basis, the
global entry points provided here are needed to locate the site data.

Some implementations may have a built-in tightly constrained layout. In flexible
implementations there may be several layout choices, thereby allowing the user the
freedom to select one that works best with a given application. Furthermore, such

implementations may allow the user to create a custom layout to replace one of the
standard layouts. As long as the custom layout procedure provides the entry points
and functionality described here, compatibility with the remainder of the QDP library
is assured.

3.2.1 QDP setup

Layout creation

The layout creation routine Layout: :create() defined in Section 3.1 generates pre-
defined lattice subsets for specifying even, odd, and global subsets of the lattice. The
rb set can be dereferenced to produce the even and odd subsets:

Subset even, odd, all, rb[0], rb[1], mcb[0], ..., mcb[l << (Nd+1)]
It also creates the nearest-neighbor shifts for each coordinate direction.
Defining the layout

There are set/accessor functions to specify the lattice geometry used in the layout.
Generically, the accessors have the form:

Generic | void Layout: :set<something>(<param>)
Purpose | Set one of the site data layout configurations.
Example | Layout: :setLattSize(size);

The type of input information needed by the layout is as follows:

1. Number of dimensions Ny. Must be the compile time dimensions.
2. Lattice size (e.g., Lo, L1, ..., Ln,—1)

3. SMP flag

These parameters are accessed and set with the following functions:

Generic | void Layout::setLattSize(const multild<int>& size)
Purpose | Set the lattice size for the data layout.

Default | No default value. Must always be set.

Example | Layout: :setLattSize(size);

Generic | void Layout: :setSMPFlag(bool)

Purpose | Turn on using multi-processor/threading

Default | Default value is false - single thread of execution.
Example | Layout: :setSMPFlag(true) ;

Generic | void Layout: :setNumProc(int N)

Purpose | In a multi-threaded implementation, use N processors.
Default | Default value is 1 - single thread of execution.
Example | Layout: : setNumProc(2) ;

3.2.2 Generic layout information

The following global entry points are provided in the Layout namespace. They pro-
vide generic user information.

Returning the spacetime coordinates

Prototype | LatticeInt Layout::latticeCoordinate(int d)
Purpose The dth spacetime coordinate.
Example | LatticeInt coord = Layout::latticeCoordinate(2);

The call Layout: :latticeCoordinate (d) returns an integer lattice field with a value
on each site equal to the integer value of the dth space-time coordinate on that site.

Lattice volume

Prototype | int Layout: :vol()
Purpose Return the total lattice volume
Example | int vol = Layout::vol();

3.2.3 Entry points specific to the layout

The additional global entry points are provided in the Layout namespace. They
reveal some information specific to the implementation.

Node number of site

Prototype | int Layout: :nodeNumber (const multild<int>& x)
Purpose Returns logical node number containing site x.
Example | node = Layout: :nodeNumber (x) ;

Linear index of site

Prototype | int Layout::linearSiteIndex(const multild<int>& x)
Purpose Returns the linearized index for the lattice site x.
Example | int k = Layout::linearSiteIndex(x);

Map node and linear index to coordinate

Prototype | multild<int> Layout::siteCoords(int node, int index)
Purpose Returns site coordinate x for the given node

node and linear index index.

Example | multild<int> lc = Layout::siteCoords(n, 1i);

Number of sites on a node

Prototype | int Layout: :sitesOnNode ()
Purpose Returns number of sites assigned to a node.
Example | int num = Layout::sitesOnNode();

The linear index returned by Layout: : 1inearSiteIndex () ranges from 0 to Layout :sitesOnNode () —1

3.3 Data Parallel Functions

Data parallel functions are described in detail in Sec. 9. In the C++ API, there are
overloaded functions that can be applied to site or lattice wide objects. Arbitrarily
complicated expressions can be built from these functions. The design of the API
describes that all operations are to be performed site-wise. The only connection
between sites is via a map or shift function.

The class of operations are generically described by site-wise operations (the “lin-
ear algebra” part of the API), and shift (or map) versions. The latter generically
involves communications among processors in a parallel implementation.

The operator style provided by the API thus allows operations like the following:

LatticeFermion A, B;
LatticeColorMatrix U;
B =1TU x A;

From the type declarations

typedef OLattice<PScalar<PColorMatrix<RComplex<float>, Nc> > > LatticeColorMatrix
typedef OLattice<PSpinVector<PColorVector<RComplex<float>, Nc>, Ns> > LatticeFermion

one can see a OLattice multiplies a OLattice. At each site, the U field is a scalar
in spin space, thus a PScalar multiplies a PSpinVector - a vector in spin space.
For each spin component, there is a PColorMatrix multipling a PColorVector. The
multplications involve complex numbers.

Thus we see that mathematically the expression carries out the product

B, (2) = UY(2) * Al (2)
for all lattice coordinates x belonging to the subset all. Here A and B are objects
of lattice Dirac fermion fields and U is an onject of type lattice gauge field. The
superscripts ¢, j refer to the color indices and the subscript « refers to the spin index.
For each spin and color component, the multiplication is over complex types.

This tensor product factorization of types allows for potentially a huge variety
of mathematical objects. The operations between the objects is determined by their
tensor product structure.

The API allows for operations to be narrowed to a subset of sites. The infix
notation does not allow for extra arguments to be passed to an operation, so the
subset is fixed via the target. The API mandates that there is in use in even a
complex operation, namely the target specifies the subset to use. To narrow an
operation to a specific subset, one specifies the subset in the target as follows:

chileven] = u * psi;

which will store the result of the multiplication on only the even subset.

The C++ API differs from the C API signficantly in the name of functions. In
C—++, there is no need for naming conventions for the functions since one can overload
the function name on the types of its arguments. More significantly, the C API uses
a functional style where the destination of an operation is part of the arguments for
an operation, and all functions return void. The C++ API uses an operator /infix
style allowing complex expressions to be built.

3.3.1 Constant Arguments

In some cases it is desirable to keep an argument constant over the entire subset. For
example the function

Complex z;
LatticeFermion c, b;
cls] = z x b;

multiplies a lattice field of color vectors by a complex constant as in
clx] = zxb[x]

for x in subset s.

3.3.2 Functions

In the C++ API all operations are functions that act on their argument and most
functions return their results. Except for explicit shift functions and global reductions,
these functions are point-wise. The C++ API differs from the C API in that there
are no combined operations like adjoint with a multiply. Instead, one simply calls the
adjoint function. Thus

c = adj(uw)*b
carries out the product
clx] = adj(ulx])*b[x]

for all sites x in subset all.

3.3.3 Gamma matrices

Multiplication of spin vectors and matrices by y-matrices is provided.

LatticeDiracFermion c, b;
int n;
¢ = Gamma(n) * b;

Where the multiplciation is spin matrix times a spin vector. Right multiplication is
also supported.

LatticePropagator q, r;
int n;
q = r * Gamma(n);

The Gamma (n) provides an enumeration of all possible yv-matrix combinations. See
the Section 7 for more details.

10

3.3.4 Shift

A shift function is a type of map that maps sites from one lattice site to another. In
general, maps can be permutation maps but there are nearest neighbor shift functions
provided by default. See the discussion of shifts below in Section 3.8. Thus

cls] = shift(b,sign,dir)

shifts an object along the direction specified by dir and sign for all sites x in desti-
nation subset s. Here sign = +1 and dir =0,..., Nd — 1.

3.3.5 Aliasing

The API does not specify the behavior when a source in a data-parallel expression is
simultaneously used in the left-hand side of that expression. An example is as follows:

// DO NOT DO THIS
LatticeColorMatrix a;
a=ax*x a;
LatticeComplex b;

b = shift(b,sign,dir);

This is an instance of the “self-reference” problem.

3.4 Creating and destroying lattice fields

The declaration of an object of some type say LatticeReal will call a constructor.
The implementation guarantees the object is fully created and all memory needed for
it is allocated. Thus, there is no need for the user to use new to create an object.
The use of pointers is discouraged. When an object goes out of scope, a destructor
is called which will guarantee all memory associated with the object is released.

There is no aliasing or referencing of two objects with the same internal data
storage. Each object a user can construct has its own unique storage.

3.5 Array container objects

For convenience, the API provides array container classes with much limited facility
compared to the Standard Template Library. In particular, one, two, three, and
four dimensional array container classes are available. The benefit of two and higher
dimension classes is that they can be allocated after they are declared. This is in
contrast to the STL technique, which builds multi-dimensional arrays out of nested
one-dimensional array, and one must allocate a nested array of array classes by looping
over the individual elements allocating each one.
An array of container classes is constructed as follows:

multild<LatticeComplex> r(Nd); // a 1-D array of LatticeComplex
multi2d<Real> foo0(2,3); // a 2-D array of Real with first index slowest

11

3.6 Function objects

Function objects are used in the constructions of Sets/subsets and maps/shifts. The
objects created by maps are themselves function objects. They serve the role as
functions, but because of their class structure can also carry state.

A function object has a struct/class declaration. The key part is the function call
operator. A generic declaration is something like:

struct MyFunction
{
MyFunction(int dir) : mu(dir) {}
Real operator() (const int& x)
{* operates on x using state held in mu and returns a Real *\}

int mu;

by

A user can then use an object of type MyFunction like a function:

MyFunction foo(37); // hold 37 within foo
int x;
Real boo = foo(x); // applies foo via operator()

3.7 Subsets

It is sometimes convenient to partition the lattice into multiple disjoint subsets (e.g.
time slices or checkerboards). Such subsets are defined through a user-supplied func-
tion that returns a range of integers 0,1,2,...,n—1, so that if f(x) = ¢, then site x is
in partition 7. A single subset may also be defined by limiting the range of return val-
ues to a single value (i.e. 0). This procedure may be called more than once, and sites
may be assigned to more than one subset. Thus, for example an even site may also
be assigned to a time slice subset and one of the subsets in a 32-level checkerboard
scheme. A subset definition remains valid until is destructor is called.

The layout creation routine Layout::create() defined in Section 3.1 generates
predefined lattice subsets for specifying even, odd, and global subsets of the lattice.
The rb set can be dereferenced to produce the even and odd subsets:

Subset even, odd, all, rb[0], rb[1], mcb[0], ..., mcb[1l << (Nd+1)]

Defining a set Subsets are first defined using a function object through the con-
struction of an object of type OrderedSet and UnorderedSet whose parent type is
Set. This function object is a derived type of SetFunc. Function objects are described
in Section 3.6. Subsets are defined through the parent data type Subset. There are
two derived useable (concrete) types called UnorderedSubset and OrderedSubset.
The latter type is an optimization that assumes (and run-time enforces) that the
subset of sites for a given site layout must be contiguous. It is an error if they are
not. Clearly, this assumption is layout dependent and is used mainly by the system

12

wide supplied even, odd, etc. subsets under compile time flags. A general user subset
should be declared to be UnorderedSubset. In both ordered and unordered subsets,
they are constructed from the corresponding OrderedSet and UnorderedSet.

Prototype UnorderedSet : :make(const SetFunc& func)
OrderedSet: :make(const SetFunc& func)

int SetFunc::operator() (const multild<int>& x)
int SetFunc: :numSubsets()

Purpose Creates a Set that holds numSubsets subsets based on func.

Requirements | The func is a derived type of SetFunc and maps lattice coordinates to
a partition number.
The function in func.numSubsets() returns number of partitions.

Example UnorderedSet timeslice;
class timesliceFunc : public SetFunc;
timeslice.make(timesliceFunc);

Here is an explicit example for a timeslice:

struct TimeSliceFunc : public SetFunc

{
TimeSliceFunc(int dir): mu(dir) {}
// Simply return the mu’th coordinate
int operator() (const multild<int>& coord)
{return coord[mu];}
// The number of subsets is the length of the lattice
// in direction mu
int numSubsets() {return Layout::lattSize() [mu];}
int mu; // state
}

UnorderedSet timeslice;
timeslice.make(TimeSliceFunc(3)) // makes timeslice in direction 3

It is permissible to call UnorderedSet.make () with a function object having only
1 subset. In this case the partition function must return zero if the site is in the
subset and nonzero if not. (Note, this is opposite the “true”, “false” convention in

Q).

Extracting a subset A subset is returned from indexing a UnorderedSet or
OrderedSet object.

13

Prototype | OrderedSubset Set::operator[] (int i)
UnorderedSubset Set::operator[] (int i)
Purpose Returns the i-th subset from a Set object.
Example | UnorderedSet timeslice;

Subset origin = timeslice[0];

The Set: :make () functions allocates all memory associated with a Set. A Subset
holds a reference info to the original Set. A destructor call on a Set frees all memory.

Using a subset A subset can be used in an assignment to restrict sites involved in
a computation:

LatticeComplex r, a, b;
UnorderedSubset s;
r[s] = 17 * a * b;

will multiply 17 * a * b onto r only on sites in the subset s.

3.8 Maps and shifts

Shifts are general communication operations specified by any permutation of sites.
Nearest neighbor shifts are a special case. Thus, for example,

LatticeHalfFermion a, r;
r[s] = shift(a,sign,dir);

shifts the half fermion field a along direction dir, forward or backward according to
sign, placing the result in the field r. Nearest neighbor shifts are specified by values
of dir in the range [0, Ny — 1]. The sign is +1 for shifts from the positive direction,
and —1 for shifts from the negative direction. That is, for sign= 41 and dir= p,
r(z) = a(x + f1). For more general permutations, dir is missing and sign specifies
the permutation or its inverse.

The subset restriction applies to the destination field r. Thus a nearest neighbor
shift operation specifying the even subset shifts odd site values from the source a and
places them on even site values on the destination field r.

Creating shifts for arbitrary permutations The user must first create a func-
tion object for use in the map creation as described in Section 3.6. Thus to use the
make a map one uses a function object in the map creation:

14

Prototype Map: :make(const MapFunc& func)

Purpose Creates a map specified by the permutation map function
object func.

Requirements | The func is a derived type of MapFunc and must have a
multild<int> operator() (const multild<int>& d)
member function that maps a source site to d.

Result Creates an object of type map which has a function call
template<class T> T Map::operator() (const T& a)
Example Map naik;

LatticeReal r,a;
r = naik(a);

The coordinate map function object func above that is handed to the map creation
function Map: :make () maps lattice coordinates of the the destination to the source
lattice coordinates. After construction, the function object of type Map can be used
like any function via the operator (). It can be applied to all QDP objects in an
expression.

The function object has an operator that given a coordinate will return the source
site coordinates. An example is as follows:

struct naikfunc : public MapFunc
{
naik(int dir) : mu(dir) {}
multild<int> operator () (const multild<int>& x)
{* maps x to x + 3*mu where mu is direction vector *\}

int mu;

}

For convenience, there are predefined Map functions named shift that can shift
by 1 unit backwards or forwards in any lattice direction. They have the form

shift(const QDPType& source, int sign, int dir);

The construction of a Map object allocates all the necessary memory needed for a
shift. Similarly, a destructor call on a Map object frees memory.

3.9 Temporary entry and exit from QDP

For a variety of reasons it may be necessary to remove data from QDP structures.
Conversely, it may be necessary to reinsert data into QDP structures. For example,
a highly optimized linear solver may operate outside QDP. The operands would need
to be extracted from QDP fields and the eventual solution reinserted. It may also be
useful to suspend QDP communications temporarily to gain separate access to the
communications layer. For this purpose function calls are provided to put the QDP
implementation and/or QDP objects into a known state, extract values, and reinsert
them.

15

Extracting QDP data

Prototype | void QDP_extract(multild<Type2>& dest, const Typel& src,
const Subset& s)

Purpose Copy data values from field src to array dest.
Typel All lattice types
Type?2 All corresponding scalar lattice types

Example | LatticeFermion a;
multild<Fermion> r(Layout::sitesOnNode());
QDP_extract(r,a,even) ;

The user must allocate the space of size Layout: : sitesOnNode () for the destination
array before calling this function, regardless of the size of the subset.

This function copies the data values contained in the QDP field src to the des-
tination field. Only values belonging to the specified subset are copied. Any values
in the destination array not associated with the subset are left unmodified. The or-
der of the data is given by Layout::1linearSiteIndex. Since a copy is made, QDP
operations involving the source field may proceed without disruption.

Inserting QDP data

Prototype | void QDP_insert(7ypel& dest, const multild<Type2>& src,
const Subset& s)

Purpose Inserts data values from array src.

Typel All lattice types

Type?2 All corresponding scalar lattice types

Example | multild<Fermion> a(Layout::sitesOnNode());
LatticeFermion r;

QDP_insert(r,a,odd);

Only data associated with the specified subset are inserted. Other values are unmod-
ified. The data site order must conform to Layout::linearSiteIndex. This call,
analogous to a fill operation, is permitted at any time and does not interfere with
QDP operations.

Suspending QDP communications If a user wishes to suspend QDP communi-
cations temporarily and carry on communications by other means, it is first necessary
to call QDP_suspend.

Prototype | void QDP_suspend(void)
Purpose Suspends QDP communications.
Example | QDP_suspend();

No QDP shifts can then be initiated until QDP_resume is called. However QDP linear
algebra operations without shifts may proceed.

16

Resuming QDP communications

To resume QDP communications one uses

Prototype | void QDP_resume(void)
Purpose Restores QDP communications.
Example | QDP_resume() ;

17

4 Simple I/0O utilities

4.1 Basic structure

There are three main types of user accessible classes for simple file 1/O - Text, XML
and Binary. For each of these classes there is a Reader and a Writer version. Each
support 1/O for any QDP defined scalar and lattice quantity as well as the standard
C-++ builtin types like int and float. These classes all read/write to one primary
node in the computer, namely Layout: : primaryNode () or node 0. Lattice quantities
are read/written lexicographically as one contiguous field with the first index in the
lattice size Layout::lattSize() varying the fastest. The XML reader functions
utilize C++ exceptions.

A record structure format is available to store both metadata and binary data. The
metadata uses the XML format. The binary I/O functions support more advanced
I/O mechanisms and is described in Section 5.

The C++ standard IO streams cout, cerr and cin are, of course, provided by
the language but will not work as expected. Namely, the output functions will write
on all nodes, and cin will try to read from all nodes and fail. QDP predefined glbal
objects QDPIO: :cout, QDPIO: :cerr, and QDPIO: :cin are provided as replacements,
and will write/read from only the primary node. Output can be selected from any 1
or all nodes for debugging. The QDP implementation does not destroy the standard
IO streams.

4.2 Text Reading and Writing

Standard 10O streams The global predefined objects QDPIO: : cout, QDPIO0: : cerr,
and QDPIO0: :cin are used like their C++ standard IO streams counterparts. All QDP
scalar site fields (e.g., non-lattice) fields can be read and written with these streams.
For example, one can read data and be assured the data is appropriately distributed
to all nodes.

multild<int> my_array(4);

QDPIO::cin >> my_array; // broadcasted to all nodes

Real x;

random(x) ;

QDPI0: :cout << "QDP is GREAT: x = " << x << std::endl; // one copy on output

The default behavior is for only the primary node to print on output. Also provided
are C++ Standard Library-like IO manipulators that can be used to change this
behavior. Namely, IO can be directed from any node which can aid debugging.
Implementation note: this IO manipulator for changing node output is
not yet implemented

TextFileReader member functions and global functions

18

Open to read | TextFileReader: :TextFileReader(const string& filename)
void TextFileReader::open(const string& filename)

Close TextFileReader: : “TextFileReader ()
void TextFileReader: :close()
Open? bool TextFileReader::is_open()

Any 10 errors? | bool TextFileReader::fail()

Input a type T | TextFileReader& operator>>(TextFileReader&, T&)

TextFileWriter member functions and global functions

Open to write TextFileWriter: :TextFileWriter(const string& filename)
void TextFileWriter::open(const string& filename)
Close TextFileWriter:: TextFileWriter ()
void TextFileWriter::close()
Open? bool TextFileWriter::is_open()
Any 10 errors? | bool TextFileWriter::fail()
Output a type T | TextFileWriter& operator<<(TextFileWriter&, const T&)

To read and write ascii text from the file, use the standard operators familiar in the
C++ Standard Library. An example is as follows:

TextFileWriter out("foo");

Real a = 1.2;

Complex b = cmplx(Real(-1.1), Real(2.2));
out << a << endl << b << endl;
close(out);

TextFileReader in("foo");
Real a;

Complex b;

in >> a >> b;

close(in);

The TextFileWriter functions would produce a file “foo” that looks like

1.2
-1.1 2.2

4.3 XML Reading and Writing

XML is intended as the standard format for user produced human readable data as
well as metadata. The XML format is always a tree of key /value pairs with arbitrarily
deep nesting. Here, the keys are variable names. The semantics imposed by QDP
is that no key can be repeated twice at the same nesting level. Also, the values are
considered one of three types — a simple type, a structure, or an array of one of these
three types including array.

19

The XML reader functions utilize C++ ezceptions.

The path specification for the XML reader functions is XPath. Namely, QDP
only requires a simple unix like path to reference a tag. With a simple path and
nested reading, all data can be read from a document. However, more complicated
queries are possible allowing the user to read individual pieces of a document - e.g., a
single array element. See the XPath language specification for additional information:
http://www.w3.org/TR/xpath.html .

Further details on the document format of various types is given in Section 4.4.

XMLReader member functions and global functions

Read file XMLReader: :XMLReader (const string& filename)
void XMLReader::open(const string& filename)
Read stream XMLReader: :XMLReader (std: :istream&)
void XMLReader: :open(std::istream&)

Read buffer XMLReader: : XMLReader (const XMLBufferWriter&)
void XMLReader: :open(const XMLBufferWriter&)
Close XMLReader: : “XMLReader ()
void XMLReader::close()
Open? bool XMLReader::is_open()

Any 10 errors? | bool XMLReader::fail()
Input a type T | void read(XMLReader&, const string& path, T&)

An example of reading a file is

XMLReader xml_in("foo");
int a;
Complex b;
multild<Real> c;
multild<Complex> d;
read(xml_in, "/bar/a", a); // primitive type reader
read(xml_in, "/bar/b", b); // QDP defined struct reader
read(xml_in, "/bar/c", d); // array of primitive type reader
try { // try to do the following code, if an exception catch it
read(xml_in, "/bar/d", d); // calls read(XMLReader, string, Complex)
} catch(const string& error) {
cerr << "Error reading /bar/d : " << error << endl;

}
The file “foo” might look like the following:

<?xml version="1.0"7>

<bar>

<I-- A simple primitive type -->
<a>17</d>

20

<!-- Considered a structure —-->

<re>1.0</re>

<im>2.0</im>

<I-— A length 3 array of primitive types -—>
<c>1 5.6 7.2</c>

<!-- A length 2 array of non-simple types -->
<d>
<elem>
<re>1.0</re>
<im>2.0</im>
</elem>
<elem>
<re>3.0</re>
<im>4.0</im>
</elem>
</d>
</bar>

The user can defined their own reader functions following the same overloaded
syntax as the predefined ones. This allows one to nest readers.

struct MyStruct {int a; Real b;};

void read(XMLReader& xml_in, const string path&, MyStruct& input)
{

read(xml_in, path + "/a", input.a);

read(xml_in, path + "/b", input.b);
+

XMLReader xml_in; // user should initialize here
multild<MyStruct> foo; // array size will be allocated in array reader
read(xml_in, "/root", foo); // will call user defined read above for each element

As stated before, the path specification for a read is actually an XPath query.
For example, the user can read only one array element in the file “foo” above via an
XPath query:

XMLReader xml_in("foo");
Complex dd;
read(xml_in, "/bar/d/elem[2]", dd); // read second array elem of d, e.g. d[1]

XMLWriter base class global functions

21

Start a group | void push(XMLWriter&, const string& name)
End a group | void pop(XMLWriter&, const string& name)

Output a T void write(XMLWriter&, const string& path, const T&)

Output void write(XMLWriter&, const string& path, const XMLBufferWriter&)
XMLWriter& operator<<(XMLWriter&, const XMLBufferWriter&)

void write(XMLWriter&, const string& path, const XMLReader&)
XMLWriter& operator<<(XMLWriter&, const XMLReader&)

The XMLWriter is an abstract base class for three concrete classes which allow to
write into a memory buffer, a file, or write an array of objects in a series of steps.

XMLBufferWriter derived class member functions

Return entire buffer string XMLBufferWriter::str()
Return only root element | string XMLBufferWriter: :printRoot ()

XMLFileWriter derived class member functions

File to write XMLFileWriter: :XMLFileWriter (const string& filename)
void XMLFileWriter: :open(const string& filename)
Close XMLFileWriter::"XMLFileWriter ()
void XMLFileWriter::close()
Open? bool XMLFileWriter::is_open()
Any IO errors? | bool XMLFileWriter::fail()
Flush void XMLFileWriter: :flush()

Similar to the read case, the user can also create a tower of writer functions. In
addition, the user can create memory held buffered output that can be used for
metadata. Similarly, a user can go back and forth from readers to writers.

XMLBufferWriter xml_buf;

push(xml_buf, "bar");

write(xml_buf, "a", 1); // write /bar/a =1
pop (xml_buf) ;

XMLReader xml_in(xml_buf); // re-parse the xml_buf
int a;
read(xml_in, "/bar/a", a); // now have 1 in a

XMLFileWriter xml_out("foo");

xml_out << xml_in; // will have ‘‘bar’’ as the root tag
xml_out.close();

22

XMLArrayWriter derived class member and global functions

Constructor XMLArrayWriter: :XMLArrayWriter (XMLWriter&, int size=-1)

Close XMLArrayWriter::“XMLArrayWriter ()
void XMLArrayWriter::close()
Size int XMLArrayWriter::size()

Start an array | void push(XMLArrayWriter&)
End an array | void pop(XMLArrayWriter&)

The Array class allows one to break writing an array into multiple pieces.

XMLFileWriter xml_out("foo");

XMLArrayWriter xml_array(xml_out, 350000); // Note: a big array size here
push(xml_array, "the_name_of_my_array");

for(int i=0; i < xml_array.size(); ++i)

{
push(xml_array); // start next array element - name of tag already defined
Real foo = i;
write(xml_array, "foo", foo);
pop(xml_array); // finish this array element
}

4.3.1 Using Array Containers in Reading and Writing

Array sizes present a special problem in [0. However, within XML the read (XMLReader&, string path
function can deduce the number of elements an array is expected to hold and will
always resize the array to the appropriate size. Hence, there is no need to record the
array size in the output of awrite (XMLWriter&, string path, const multild<T>&)
function call since the corresponding read can deduce the size.
This behavior is unlike the BinaryReader and BinaryWriter functions read and
write of multild. There, the length of the array is always read/written unless the
C-like behavior varieties are used.

4.4 XML document structure

QDP regards the structure of a document as composed of structures, simple types,
or arrays of structures or simple types. Simple types are the usual builtin type of
C and C++, namely int, float, double, bool, etc. In addition, the QDP scalar
equivalents Integer, Real, Double, Boolean, etc. are also consider simple types. For
instance, the code snippet

int a = 3;
write(xml_out, "a", a);

would produce

<a>3

23

indentities the name of a variable of a type with some values. Following the XML
Schema specifications, arrays of these simple types have a simple form

<!-- produced from writing a multid<int> -->
<a>3 3 4 5

Again, following the XML Schema specifications all other objects are considered
complex (e.g., complicated) types. Hence, the document snippet

<?xml version="1.0"7>

<!-- Considered a structure of simple types, arrays and other structures -->
<bar>

<!-- A simple primitive type —->

<a>17</d>

<!-- Considered a structure -—>

<re>1.0</re>
<im>2.0</im>

<I-- A length 3 array of primitive types -->
<c>1 5.6 7.2</c>

is viewed as a structure of other types:

struct bar_t
{
int a;
Complex b;
multild<Real> c;
} bar;

Hence, one views the push/pop semantics as a way of dynamically constructing struc-
tures.

XML document format

24

Integer,Real,RealD

<a>3

Boolean

<a>yes

string <a>hello world
multild<int> <a>1 2 3
Complex <a> <re>1.2</re> <im>2.0</im>
multild< Type> <a> <elem>Type </elem> <elem>Type </elem>
) <a> < > <re>1.2< > <im>2.0</im> < > < >
multild<Complex> a> <elem 1.re 1.2 /?e im>2.0</im> </elem> <elem
<re>3</re> <im>5.0</im> </elem>
<a> <ColorVector> <elem row="0"> <re>0</re> <im>1</im>
ColorVector </elem> <elem row="1"> <re>2</re> <im>3</im> </elem> ...
</ColorVector>
<a> <ColorMatrix> <elem row="0" col="0"> <re>0</re>
ColorMatrix <im>1</im> </elem> <elem row="1" col="0"> <re>2</re>
<im>3</im> </elem> ... </ColorMatrix>
<a> <SpinMatrix> <elem row="0" col="0"> <ColorMatrix>
DiracPropagator <elem row="0" col="0"> <re>0</re> <im>1</im> </elem> ...
</ColorMatrix> </elem> </SpinMatrix>
. <a> <0Lattice> <elem site="0">Type </elem> <elem
Lattice Type . .
site="1">Type </elem> </0Lattice>
) <a> <0Lattice> <elem site="0">1 </elem> <elem site="1">2
LatticeReal .
</elem> ... </0OLattice>
<a> <0OLattice> <elem site="0"> <ColorVector> <elem
LatticeColorVector | row="0"> <re>1</re> <im>2</im> </elem> </ColorVector>

</elem> </0Lattice>

A table of the document format for a variable “a” of various types.

25

4.5 Binary Reading and Writing

BinaryReader base class member functions and global functions

Any IO errors? | bool BinaryReader::fail()

Checksum BinaryReader: : getChecksum()

Input a type T | BinaryReader& operator>>(BinaryReader&, T&)

void read(BinaryReader&, T&)

void read(BinaryReader&, multild<T>&)

void read(BinaryReader&, multild<T>&, int num)

void read(BinaryReader&, multi2d<T>&)

void read(BinaryReader&, multi2d<T>&, int numl, int num2)

BinaryBufferReader member functions and global functions

Constructors | BinaryBufferReader: :BinaryBufferReader (const string& input)
void BinaryBufferReader: :open(const string& input)

Contents string BinaryBufferReader::str()

BinaryFileReader member functions and global functions

Open to read | BinaryFileReader: :BinaryFileReader (const string& filename)
void BinaryFileReader: :open(const string& filename)

Close BinaryFileReader: : “BinaryFileReader ()
void BinaryFileReader::close()
Open? bool BinaryFileReader::is_open()

BinaryWriter base class member functions and global functions

Any IO errors? | bool BinaryWriter::fail()

Flush bool BinaryWriter::flush()

Checksum BinaryWriter: :getChecksum()

Output a type T | BinaryWriter& operator<<(BinaryWriter&, const T&)
void write(BinaryWriter&, const T&)

void write(BinaryWriter&, const multild<T>&)

void write(BinaryWriter&, const multild<T>&, int num)

BinaryBufferWriter member functions and global functions

Construct | BinaryBufferWriter: :BinaryBufferWriter(const string& input)
void BinaryBufferWriter::open(const string& input)
Contents | string BinaryBufferWriter::str()

26

BinaryFileWriter member functions and global functions

Open to write BinaryFileWriter: :BinaryFileWriter(const string& filename)
void BinaryFileWriter::open(const string& filename)

Close BinaryFileWriter::"BinaryFileWriter ()
void BinaryFileWriter::close()

Open? bool BinaryFileWriter::is_open()

Output a type T | BinaryFileWriter& operator<<(BinaryFileWriter&, const T&)
void write(BinaryFileWriter&, const T&)

void write(BinaryFileWriter&, const multild<T>&)

void write(BinaryFileWriter&, const multild<T>&, int num)

To read and write ascii text from the file, use the standard operators familiar in the
C++ Standard Library. E.g.,

BinaryFileWriter out("foo");

Real a;

LatticeColorMatrix b

write(out, a); // can write this way

out << b; // or can write this way - have choice of style
close(out);

BinaryFileReader in("foo");
Real a;

LatticeColorMatrix b;
read(in, a);

in >> b;

close(in);

4.5.1 Using Arrays Containers in Reading and Writing

The read and write functions using BinaryReader and BinaryWriter are special
since metadata (in this case the length of the array) is read/written along with an
object of type multiid.

The standard C behavior is when writing an array, only write whatever number
of elements is desired. The problem occurs when reading since number of elements
is not known beforehand. The default write behavior is to also write the number of
elements, and the read expects to find this length. The standard C behavior (read-
ing/writing a fixed number of elements) is obtained through an an explicit argument
to the call. Specifically:

BinaryFileWriter out("foo");
multild<Real> a(17);

write(out, a); // will write an int=a.size() along with a.size() Real elements
write(out, a, 4); // only writes 4 Real elements
close(out);

27

BinaryFileReader in("foo");

multild<Real> a;

read(in, a); // reads an int=a.size(), a is resized, and reads a.size() elements
read(in, a, 4); // reads precisely 4 elements, no resizing.

in >> b;

close(in);

28

5 QDP Record I/O utilities

5.1 Overview of File Format
5.1.1 Binary QDP Files

The binary file format has been designed with flexibility in mind. For archiving
purposes, the allowable file organization may be further restricted. Here we described
the unrestricted format.

Two classes of file volumes are supported: single-file volumes and multiple-file
volumes. In the latter case lattice data is scattered among several files for distributed
reading and writing. In the former case all the lattice data is contained in a single
file.

Single file format Single binary QDP files are composed of a series of one or
more application records. A single application record encodes a single QDP field or
an array of QDP fields of the same data type. Physics metadata, managed at the
convenience of the applications programmer, is associated with the file itself and with
each application record as well. Above the API the QDP file is viewed as follows:

e File physics metadata

e Record 1 physics metadata and data
e Record 2 physics metadata and data
e ctc.

For example, a file might record a series of staggered fermion eigenvectors for a gauge
field configuration. Each record would map to a single field of type LatticeColorVector.
The file metadata might include information about the gauge field configuration and
the record metadata might encode the eigenvalue and an index for the eigenvector.

For another example, the gauge field configuration in four dimensions is repre-
sented in QDP as an array of four color matrix fields. The configuration is con-
ventionally written so that the four color matrices associated with each site appear
together. A file containing a single gauge field configuration would then consist of a
single record containing the array of four color matrices.

The API permits mixing records of different datatypes in the same file. While this
practice may be convenient for managing projects, it may be forbidden for archival
files.

Additional metadata is automatically managed by QIO (without requiring in-
tervention by the applications programmer) to facilitate the implementation and to
check data integrity. Thus the file actually begins with QIO metadata and physics
metadata and each application record consists of five logical records. Within QIO the
file is viewed as a series of logical records as follows:

e Private file QIO metadata

29

e User file physics metadata

e Record 1 private QIO metadata
e Record 1 user physics metadata
e Record 1 binary data

e Record 1 private checksum

e Record 2 private QIO metadata
e Record 2 user physics metadata
e Record 2 binary data

e Record 2 private checksum

e ctc.

The site order of the binary data is lexicographic according to the site coordinate r;
with the first coordinate ry varying most rapidly.

A new format called LIME (Lattice-QCD Interchange Message Encapsulation) is
used for packaging the logical records. A feature of this format is the maximum record
size is quite - 2% — 1 bytes. However, file system limitations may require splitting a
single file into multiple physical files. No provision is provided for such splitting. It
is expected that in time file systems will evolve to allow much larger file sizes. In the
interim, facilities like cpio and tar can be used for file splitting.

Multifile format The API provides for rapid temporary writing of data to scratch
disks and reading from scratch disks. This same format may be used for staging files
for access by many compute nodes. In this case it is assumed that the files are not
intended for longer term storage. Thus the file format in this case is implementation-
dependent and not standardized. A specific choice of format is described in the
Appendix.

5.1.2 ASCII Metadata Files

The API also provides for reading and writing global values in a standard metadata
format from or to a file or a stream buffer. Startup parameters for controlling a
simulation could be read in this way. Results of a computation could be written in
this way for post processing and analysis.

The XML I/O facilities described in Section 4.3 are used for manipulating the
metadata.

30

5.2 QDP/C++4 Record API

As with standard Unix, a file must be opened before reading or writing. However, we
distinguish file handles for both cases. If the system provides a parallel file system,
it is possible for several processors to read and write a single file. We call this mode
“parallel”. Otherwise the file is read by a single processor and the data delivered
according to the distributed memory layout. The reverse occurs upon writing. We
call this mode “serial”. To allow user choice where the architecture permits, we
provide for requesting either mode. However, the request may be overridden if the
system permits only one mode. Upon writing, we allow appending to an existing file.

QDPFileWriter class member functions and global functions

Open QDPFileWriter: :QDPFileWriter(
const XMLBufferWriter& file_xml, const string& path,)
QDP_volfmt_t volfmt, QDPIO_serialparallel_t serpar,
QDP_filemode_t mode)

void QDPFileWriter: :open(const XMLBufferWriter& file_xml,
const string& path,
QDP_volfmt_t volfmt, (QDPIO_serialparallel_t serpar,
QDP_filemode_t mode)

Close QDPFileWriter:: “QDPFileWriter ()
void QDPFileWriter::close()
Open? bool QDPFileWriter::is_open()

Errors? bool QDPFileReader: :bad()

Write a T | void write(QDPFileWriter&, XMLBufferWriter& rec_xml, const T&)
Array of T | void write(QDPFileWriter&, XMLBufferWriter& rec_xml,
const multild<T>&)

Concrete class for all QDPIO write operations. Here, write writes the sites as the
slowest varying index and the array indices (mulild) inside of them. bad states if any
fatal errors have occurred. The volfmt argument is one of

QDPIO_SINGLEFILE, QDPIO_MULTIFILE

The serpar argument is one of
QDPIO_SERIAL, QDPIO_PARALLEL

and the mode argument is one of
QDPIO_CREATE, QDPIO_OPEN, QDPIO_APPEND

where QDPIO_CREATE fails if the file already exists, QDPI0_OPEN overwrites the file if
it already exists and creates it if not, and QDPI0_APPEND fails if the file does not exist
and otherwise appends at the end of the file. When appending, the file metadata
argument is ignored, since it should already exist.

31

QDPFileReader class member functions and global functions

Open QDPFileReader: :QDPFileReader (XMLReader& file_xml,
const string& path, QDP_serialparallel_t serpar)
void QDPFileReader: :open(XMLReader& file_xml,
const string& path, QDP_serialparallel_t serpar)

Close QDPFileReader: : “QDPFileReader ()
void QDPFileReader::close()
Open? bool QDPFileReader: :is_open()
EOF? bool QDPFileReader::eof ()
Errors? bool QDPFileReader: :bad()

Read a T void read(QDPFileReader&, XMLReader& rec_xml, T&)
Array of T | void read(QDPFileReader&, XMLReader& rec_xml, multild<T>&)

Only xml void peek(QDPFileReader&, XMLReader& rec_xml)

Next record | void skip(QDPFileReader&)

Concrete class for all QDPIO read operations. Here, read(\ldots,multild<T>)
expects in the binary file that the sites are the slowest varying index and the array
indices (mulild) inside of them. The QDP_volfmt_t volfmt argument is not needed -
a file in either QDPIO_SINGLEFILE or QDPIO_MULTIFILE format will be automatically
detected and read appropriately. peek returns only the metadata and repositions
back to the beginning of the record. skip skips to the next logical record - it may
read the data and discard it. bad states if any fatal errors have occurred. There are
no user functions that position within a logical record.
Here is an example of how to use the record 1/O facility.

XMLBufferWriter file_xml;

QDPFileWriter out(file_xml, "foo", QDPIO_SINGLEFILE,
QDPIO_SERIAL, QDPIO_OPEN);

XMLBufferWriter rec_xml;

LatticeColorMatrix a;

write(out, rec_xml, a);

write(out, rec_xml, a); // for fun, write field twice

close(out) ;

QDPFileReader in(file_xml, "foo", QDPIO_SERIAL);
read(in, rec_xml, a);

skip(in);

close(in);

32

6 Compilation with QDP

6.1 Generic header and macros

The compilation parameters:

Nd — the number of space-time dimensions

Nc¢ — the dimension of the color vector space

Ns — the dimension of the spin vector space

are defined in qdp++/include/params.h . There are macros ND, NC, NS that are used
to set the above parameters via

const int Nd = ND;
const int Nc = NC;
const int Ns NS;

They are set in the build directories file include/qdp-config.h during configuration.

6.2 How to configure QDP++

QDP++ uses the GNU autoconf and automake systems for builds. Help on configu-
ration parameters can be found with

% cd qdpt++
% configure --help

The most important flag is the --enable-parallel-arch=<some arch> with the
architectural choices scalar, parscalar, scalarvec, parscalarvec.

6.3 Nonuniform color and precision

Users wishing to vary color and precision within a single calculation must use specific
type names whenever these types and names differ from the prevailing precision and
color. Type declarations can be found in qdp++/include/defs.h . A convenient
definition of a LatticeColorMatrixand LatticeDiracFermionis as follows:

typedef OLattice<PScalar<ColorMatrix<Complex<float>, Nc> > > LatticeColorMatrix
typedef OLattice<SpinVector<ColorVector<Complex<float>, Nc>, Ns> > LatticeFermion

However, for the user to choose a specific number of colors:

const int NN = 17 // work in SU(17)
typedef OLattice<PScalar<ColorMatrix<Complex<float>, NN> > > LatticeColorMatrix17

33

7 Spin Conventions

The following set of y-matrices are used in four dimensions:

0 00 i
0 00 0 io! .
L 0 —i 00 (—wl 0) —owe
—i 000
000 —1
001 0 0 —io?)
m 010 0 <i02 0) oro
100 0
00 i 0
00 0 —2 0 o3
72 i 00 0 (—i03 0> —oreo
0i0 0
0010
0001 0 1 1
s 1000 (10) ool
0100

The basis is chiral. All the possible gamma matrix products are represented via

L'(n) = v5°v1"12275°

where n; are single bit fields. Since 7 comes first the bit for it must come first. So,
Y5 = YoY1Y273 is represented as 1111b = 15d, and ~y7y173 is represented as 1011b =
11d (note the ordering). The conventional «-matrices are

') = 7
I['2) = m
['4) = »
') = 7

This enumeration is ~-basis independent.

34

8 Implementation Details

The following table lists some of the QDP headers.

primitive.h
primscalar.h
primmatrix.h
primvector.h
primseed.h
reality.h
simpleword.h

name purpose

qdp.h Master header and QDP utilities
qdptype.h Main class definition

qdpexpr.h Expression class definition

Main header for all primitive types
Scalar primitive class and operations
Matrix primitive and operations
Vector primitive and operations
Seed (random number) primitive
Complex number internal class
Machine word-type operations

35

9 Supported Operations

This section describes in some detail the names and functionality for all functions in
the interface involving linear algebra with and without shifts.

All QDP objects are of type QDPType, and QDP functions act on objects of
this base class type. Unless otherwise indicated, operations occur on all sites in
the specified subset of the target, often an assignment statement or object definition.
The indexing of a QDPType returns an Ivalue suitable for assignment (but not object
definition). It is also used to narrow the lattice sites participating in a global reduction
since the result of such a reduction is a lattice scalar, hence are independent of lattice
sites.

Supported operations are listed below. Convention: protoyypes are basically of
the form:

QDPType unary_function(const QDPType&)
QDPType binary_function(const QDPType&, const QDPType&)

9.1 Subsets and Maps

Set::make(const SetFunck&) Set construction of ordinality num subsets. func maps
coordinates to a coloring in [0,num)

Map: :make(const MapFunc&) Construct a map function from source sites to the dest
site.

9.2 Infix operators
Unary infiz (e.g., operator-):

- negation

+ : unary plus
- bitwise not
I : boolean not

Binary infiz (e.g., operator+):

+ . addition

- : subtraction

x : multiplication
/ : division

% : mod

& . bitwise and

| . bitwise or

. bitwise exclusive or
<< ¢ left-shift
>> : right-shift

36

Comparisons (returning booleans, e.g., operator<):

3) 3

&% : and of 2 booleans
|| : or of 2 boolean

Assignments (e.g., operator+=):
= +=’ = *=’ /=1 %=, |=’ = A=, <<=, >>=

Trinary:

where(bool,argl,arg2) : the C trinary "?" operator -> (bool) 7 argl

9.3 Functions (standard C math lib)
Unary:

cos, sin, tan, acos, asin, atan, cosh, sinh, tanh,
exp, log, loglO, sqrt,
ceil, floor, fabs

Binary:

ldexp, pow, fmod, atan2

9.4 Additional functions (specific to QDP)

Unary:
adj : hermitian conjugate (adjoint)
conj : complex conjugate
transpose : matrix tranpose, on a scalar it is a nop
transposeColor : color matrix tranpose, on a scalar it is a nop
transposeSpin : spin matrix tranpose, on a scalar it is a nop
trace : matrix trace
real : real part
imag : imaginary part
traceColor . trace over color indices
traceSpin . trace over spin indices
timesI : multiplies argument by imag ”i”
localNorm2 . on fibers computes trace(adj(source)*source)
Binary:
cmplx :returns complex object argl + i*arg2
locallnnerProduct : at each site computes trace(adj(argl)*arg2)
outerProduct : at each site constructs (argl; x arg2});;

37

1 arg?2

9.5 In place functions

random(dest) :uniform random numbers - all components
gaussian(dest) : uniform random numbers - all components
copymask (dest ,mask,src) : copy src to dest under boolean mask

9.6 Broadcasts

Broadcasts via assignments (via, operator=):

<LHS>
<LHS>

<constant> : globally set conforming LHS to constant
Zero : global always set LHS to zero

9.7 Global reductions

sum(argl) : sum over lattice indices returning object of same fiber
type

norm2 (argl) : sum(localNorm2(argl))

innerProduct(argl,arg2) : sum(locallnnerProduct(argl,arg2))

sumMulti(argl,Set) :sum over each subset of Set returning #subset objects of

same fiber type

9.8 Global comparisons

globalMax(argl) : maximum across the lattice (simple scalars)
globalMin(argl) : minimum across the lattice (simple scalars)

9.9 Accessors

Peeking and poking (accessors) into various component indices of objects.

peekSite(argl,multild<int> coords) : return object located at lattice coords
peekColor(argl,int row,int col) : return color matrix elem row and col
peekColor(argl,int row) : return color vector elem row
peekSpin(argl,int row,int col) : return spin matrix elem row and col
peekSpin(argl,int row) . return spin vector elem row
pokeSite(dest,src,multild<int> coords) : insert into site given by coords
pokeColor(dest,src,int row,int col) : insert into color matrix elem row and col
pokeColor(dest,src,int row) : insert into color vector elem row
pokeSpin(dest,src,int row,int col) . insert into spin matrix elem row and col
pokeSpin(dest,src,int row) : insert into spin vector elem row

38

9.10 More exotic functions:

e spinProject(QDPType psi, int dir, int isign)
Applies spin projection (1+isign*7y,)*psi returning a half spin vector or matrix

e spinReconstruct (QDPType psi, int dir, int isign)
Applies spin reconstruction of (1 + isign * ,)*psi returning a full spin vector
or matrix

e quarkContracti13(a,b)
Epsilon contract 2 quark propagators and return a quark propagator. This is
used for diquark constructions. Eventually, it could handle larger Nc. The
numbers represent which spin index to sum over.

The sources and targets must all be propagators but not necessarily of the
same lattice type. Effectively, one can use this to construct an anti-quark from
a di-quark contraction. In explicit index form, the operation quarkContract13
does

zgkei’j/k'

k'k i’ jj’
target,z =€ * sourcel,, x sourceZ;;

and is (currently) only appropriate for Nc=3 (or SU(3)).

e quarkContracti4(a,b)
Epsilon contract 2 quark propagators and return a quark propagator.

z]kEi’j’k’

k'k i’ jj’
target,z = € * sourcel ,, x source2g,

e quarkContract23(a,b)
Epsilon contract 2 quark propagators and return a quark propagator.
z]kei’j’k"

k'k i’ jj’
target,s = € * sourcel,, x source2 g

e quarkContract24(a,b)
Epsilon contract 2 quark propagators and return a quark propagator.

zngi’j’k’

k'k i’ jj’
target,; = € * sourcel ,, x sourceZg,

e quarkContracti12(a,b)
Epsilon contract 2 quark propagators and return a quark propagator.

z]kGi’j’k’

k'k i’ jj’
target,z = € * sourcel,, x source2;g

e quarkContract34(a,b)

Epsilon contract 2 quark propagators and return a quark propagator.

zgkei’j’k’

— i’ 3’
targetaﬂ € * sourcel, g * source2y

39

e colorContract(a,b,c)
Epsilon contract 3 color primitives and return a primitive scalar. The sources
and targets must all be of the same primitive type (a matrix or vector) but
not necessarily of the same lattice type. In explicit index form, the operation
colorContract does

TN .. Y ’
target = €% x sourcel™ x source2’’ x source3™

or

k

target = €7* x sourcel® * source2’ x source3F

and is (currently) only appropriate for Nc=3 (or SU(3)).

9.11 Operations on subtypes

Types in the QDP interface are parameterized by a variety of types, and can look
like the following:

typedef OLattice<PScalar<PColorMatrix<RComplex<float>, Nc> > > LatticeColorMatrix
typedef OLattice<PSpinVector<PColorVector<RComplex<float>, Nc>, Ns> > LatticeFermion

o Word type: int, float, double, bool. Basic machine types.

Reality type: RComplex or RScalar.

Primitive type: PScalar, PVector, PMatrix, PSeed.

Inner grid type: IScalar or [Lattice.

Outer grid type: OScalar or OLattice.

Supported operations for each type level as follows:

Grid type: OScalar, OLattice, IScalar, ILattice
All operations listed in Sections 9.2-9.10

Primative type:

PScalar: All operations listed in Sections 9.2-9.10

40

PMatrix< N>:

Unary: -(PMatrix), +(PMatrix)

Binary: -(PMatrix,PMatrix), +(PMatrix,PMatrix), *(PMatrix,PScalar),
*(PScalar,PMatrix), *(PMatrix,PMatrix)

Comparisons: none

Assignments: =(PMatrix), =(PScalar), -=(PMatrix), +=(PMatrix), *=(PScalar)

Trinary: where

C-lib funcs: none

QDP funcs: all

In place funcs: all

Reductions: all

PVector<N>:

Unary: -(PVector), +(PVector)

Binary: -(PVector,PVector), +(PVector,PVector), *(PVector,PScalar),
*(PScalar,PVector), *(PMatrix,PVector)

Comparisons: none

Assignments: =(PVector), -=(PVector), +=(PVector), *=(PScalar)

Trinary: where

C-lib funcs: none

QDP funcs: real, imag, timesI, localNorm2, cmplx, locallnnerProduct,
outerProduct

In place funcs: all

Broadcasts: =(Zero)

Reductions: all

PSpinMatrix<N>: Inherits same operations as PMatrix
Unary: traceSpin, transposeSpin

Binary: *(PSpinMatrix,Gamma), * (Gamma,PSpinMatrix)

Exotic: peekSpin, pokeSpin, spinProjection, spinReconstruction
PSpinVector<IN>: Inherits same operations as PVector

Binary: *(Gamma,PSpinVector)

Exotic: peekSpin, pokeSpin, spinProjection, spinReconstruction
PColorMatrix<N>: Inherits same operations as PMatrix

Unary: traceColor, transposeColor

Binary. *(PColorMatrix,Gamma), * (Gamma,PColorMatrix)

Exotic: peekColor, pokeColor

41

PColorVector<IN>: Inherits same operations as PVector

Binary: *(Gamma,PColorVector)
Exotic: peekColor, pokeColor

Reality: RScalar, RComplex
All operations listed in Sections 9.2-9.10

Word: int, float, double, bool
All operations listed in Sections 9.2-9.10. Only boolean ops allowed on bool.

42

10 Detailed function description

The purpose of this section is to show some explicit prototypes and usages for the
functions described in Section 9. In that section, all the functions are shown with
complete information on which operations and their meaning are supported on some
combination of types. The purpose of this section is something like the inverse -
namely show all the functions and what are some (selected) usages.

10.1 Unary Operations

Elementary unary functions on reals

Syntax Type func(const Type& a)

Meaning | r = func(a)

func cos, sin, tan, acos, asin, atan, sqrt, abs, exp, log, sign
Type Real, LatticeReal

Elementary unary functions on complex values

Syntax Type func(const Type& a)
Meaning | r = func(a)

func exp, sqrt, log

Type Complex, LatticeComplex

Assignment operations

Syntax Type operator=(const Type& r, const Typek a)
Meaning | 7 = a
Type All numeric types

Shifting

Syntax Type shift(const Type& a, int sign, int dir)
Meaning | 7 =a
Type All numeric types

Hermitian conjugate

Syntax Type adj(const Typek a)

Meaning | r = a'

Type Real, Complex, ColorMatrix, DiracPropagator
Also corresponding lattice variants

43

Transpose

Syntax Type transpose(const Type&k a)
Meaning | r = transpose(a)
Type Real, Complex, ColorMatrix, DiracPropagator

Also corresponding lattice variants

Transpose of a color matrix

Syntax Type transposeColor(const Typek a)

Meaning | 7 = a’*

Type Real, Complex, ColorMatrix, DiracPropagator
Also corresponding lattice variants

Transpose of a spin matrix

Syntax Type transposeSpin(const Type&k a)

Meaning | 743 = asq

Type Real, Complex, SpinMatrix, DiracPropagator
Also corresponding lattice variants

Complex conjugate

Syntax Type conj(const Type&k a)

Meaning | r = a*

Type Real, Complex, ColorMatrix, DiracFermion, DiracPropagator
Also corresponding lattice variants

10.2 Type conversion

Types can

be precision converted via a conversion function of the destination class.

Convert integer or float to double

Syntax Type2 Type2(const Typel&k a)
Example | LatticeReal a; LatticeRealD r = LatticeRealD(a)
LatticeColorMatrix a; LatticeColorMatrixD r = LatticeColorMatrixD(a)
Typel All single precision numeric types
Type?2 All conforming double precision numeric types

Convert double to float

Syntax Type2 Type2(const Typel&k a)
Example | LatticeRealD a; LatticeReal r = LatticeReal(a)
LatticeColorMatrixD a; LatticeColorMatrix r = LatticeColorMatrix(a)
Typel All double precision numeric types
Type?2 All conforming single precision numeric types

44

Integer to real

Syntax Type2 Type2(const Typel&k a)

Example | LatticeInt a; LatticeReal r = LatticeReal(a)
Typel All integer precision numeric types

Type?2 All conforming real precision numeric types

Real to integer

Syntax

Type2 Type2(const Typel&k a)

Example

LatticeReal a; LatticeInt r = LatticeInt(a)

QDP Type to underlying wordtype

Syntax Type2 Type2(const Typel&k a)
Meaning | r = bool(a);
Example | Integer a; int r = toWordType(a);
Boolean a; bool r = toWordType(a);
Real32 a; float r = toWordType(a);
Real64 a; double r = toWordType(a);
Real a; float r = toWordType(a); for single precision build
Real a; double r = toWordType(a); for double precision build
Typel All QDP simple scalar types, like Real
Type?2 The underlying word type.
In the case of floating point types, the underlying base precision.

QDP types like Real, Double, Integer, Boolean are not primitive types, so an

explicit conversion is provided.

Real to float

Syntax float toFloat(const Real& a)
Meaning | r = float(a);
Example | Real a; float r = toFloat(a);

The QDP type Real is not a primitive type, so an explicit conversion is provided.

Double to double

Syntax double toDouble(const RealD& a)
Meaning | r = double(a);
Example | RealD a; double r = toDouble(a);

The QDP type RealD is not a primitive type, so an explicit conversion is provided.

45

Bool to bool

Syntax bool toBool(const Boolean& a)
Meaning | r = bool(a);
Example | Boolean a; bool r = toBool(a);

The QDP type Boolean is not a primitive type, so an explicit conversion is pro-

vided.

10.3 Operations on complex arguments

Convert real and imaginary to complex

Syntax Type cmplx(const Typel& a, const Type2& b)
Meaning | Rer =a, Imr =5

Typel constant, Real, Also corresponding lattice variants
Type2 constant, Real, Also corresponding lattice variants
Type Complex, Also corresponding lattice variants

Example | Reala;
Complex = cmplx(a, 0);

Real part of complex

Syntax Type real(const Type&k a)
Meaning | r = Rea

Imaginary part of complex

Syntax Type imag(const Type&k a)
Meaning | r = Ima

10.4 Component extraction and insertion

Accessing a site object

Syntax Type peekSite(const LatticeType& a, const multild<int>& c)
Meaning | r = a|x]

Accessing a color matrix element

Syntax LatticeComplex peekColor(const LatticeColorMatrix& a,
int i, int j)

LatticeSpinMatrix peekColor(const LatticeDiracPropagator& a,
int i, int j)

Meaning | r = a; ;

46

Inserting a color matrix element

Syntax LatticeColorMatrix& pokeColor(LatticeColorMatrix& r,
const LatticeComplex& a, int i, int j)
Meaning | 7;; = a

Accessing a color vector element

Syntax LatticeComplex peekColor(const LatticeColorVector& a,
int i)

LatticeSpinVector peekColor(const LatticeDiracFermion& a,
int 1)

Meaning | r = a;

This function will extract the desired color component with all the other indices
unchanged.

A lattice color vector is another name (typedef) for a LatticeStaggeredFermion.
Namely, an object that is vector in color spin and a scalar in spin space. Together
with spin accessors, one can build a LatticeDiracFermion.

Inserting a color vector element

Syntax LatticeColorVector& pokeColor(LatticeColorVector& r,
const LatticeComplex& a, int i)
Meaning | r; = a

This function will extract the desired color component with all the other indices
unchanged.

A lattice color vector is another name (typedef) for a LatticeStaggeredFermion.
Namely, an object that is vector in color spin and a scalar in spin space. Together with
spin accessors, one can build a LatticeDiracFermion or a LatticeDiracPropagator.

Accessing a spin matrix element

Syntax LatticeComplex peekSpin(const LatticeSpinMatrix& a,
int i, int j)

LatticeColorMatrix peekSpin(const LatticeDiracPropagator& a,
int i, int j)

Meaning | r = a;;

Inserting a spin matrix element

Syntax LatticeSpinMatrix& pokeSpin(LatticeSpinMatrix& r,
const LatticeComplex& a, int i, int j)
Meaning | 7, ; = a

47

Accessing a spin vector element

Syntax LatticeComplex peekSpin(const LatticeSpinVector& a,
int 1)
LatticeColorVector peekSpin(const LatticeDiracFermiong& a,
int i)
Meaning | r = a;

This function will extract the desired spin component with all the other indices
unchanged.

A lattice spin vector is an object that is a vector in spin space and a scalar in
color space. Together with color accessors, one can build a LatticeDiracFermion or a
LatticeDiracPropagator.

Inserting a spin vector element

Syntax LatticeSpinVector& pokeSpin(LatticeSpinVector& r,
const LatticeComplex& a, int i)
Meaning | r; = a

This function will extract the desired spin component with all the other indices
unchanged.

A lattice spin vector is an object that is a vector in spin space and a scalar in
color space. Together with color accessors, one can build a LatticeDiracFermion or a
LatticeDiracPropagator.

Trace of matrix

Syntax Type2 trace(const Typel& a)
Meaning | r = Tra
Typel ColorMatrix, DiracPropagator, Also corresponding lattice variants
Type2 Complex, Complex, Also corresponding lattice variants
Example | LatticeColorMatrix a;
LatticeComplex r = trace(a);

Traces over all matrix indices. It is an error to trace over a vector index. It will
trivially trace a scalar variable.

Color trace of matrix

Syntax Type2 traceColor(const Typel& a)

Meaning | r = Tra

Typel SpinMatrix, Also corresponding lattice variants

Type?2 Complex, Also corresponding lattice variants

Example | LatticeDiracPropagator a;
LatticeSpinMatrix r = traceColor(a);

Traces only over color matrix indices. It is an error to trace over a color vector
index. All other indices are left untouched. It will trivially trace a scalar variable.

48

Spin trace of matrix

Syntax Type2 traceSpin(const Typel& a)

Meaning | r = Tra

Typel DiracPropagator, Also corresponding lattice variants
Type2 ColorMatrix, Also corresponding lattice variants

Example | LatticeDiracPropagator a;
LatticeColorMatrix r = traceSpin(a);

Traces only over spin matrix indices. It is an error to trace over a spin vector
index. All other indices are left untouched. It will trivially trace a scalar variable.

Dirac spin projection

Syntax Type2 spinProject(const Typel& a, int d, int p)
Meaning | r = (1 + pyq)a

Typel DiracFermion, Also corresponding lattice variants
Type?2 HalfFermion, Also corresponding lattice variants

Dirac spin reconstruction

Syntax | Type2 spinReconstruct(const Typel& a, int d, int p)
Meaning | r = recon (p, d, a)

Typel HalfFermion, Also corresponding lattice variants

Type?2 DiracFermion, Also corresponding lattice variants

10.5 Binary Operations with Constants

Multiplication by real constant

Syntax Type operator*(const Real& a, const Type& b)
Type operator*(const Type& b, const Real& a)
Meaning | 7 = a * b (a real, constant)

Type All floating types

Multiplication by complex constant

Syntax Type operator*(const Real& a, const Type& b)
Type operatorx(const Type& b, const Real& a)
Meaning | 7 = a * b (a complex, constant)

Type All numeric types

49

Left multiplication by gamma matrix

Syntax Type operatorx(const Gamma& a, const Type& b)

Meaning | r =y4*a

Gamma | Gamma constructed from an explicit integer in [0, N2 — 1]

Type SpinVector, SpinMatrix, HalfFermion, DiracFermion, DiracPropagator,
and similar lattice variants

Example | r = Gamma(7) * b;

See Section 7 for details on ~-matrix conventions.

Right multiplication by gamma matrix

Syntax Type operatorx(const Type& a, const Gamma& b)
Meaning | r = a * g4

Gamma | Gamma constructed from an explicit integer in [0, N2 — 1]
Type SpinMatrix, DiracPropagator, and similar lattice variants
Example | r = a * Gamma(15);

See Section 7 for details on «-matrix conventions.

10.6 Binary Operations with Fields

Division of real fields

Syntax Type operator/(const Typek a, const Type& b)
Meaning | 7 = a/b

Addition
Syntax Type operator+(const Type& a, const Type&k b)
Meaning | r =a+ b
Type All numeric types

Subtraction
Syntax Type operator-(const Type& a, const Type&k b)
Meaning | r =a — b
Type All numeric types

Multiplication: uniform types

Syntax Type operator*(const Type& a, const Type&k b)
Meaning | r =ax*b
Type constant, Real, Complex, Integer, ColorMatrix, SpinMatrix, DiracPropagator

50

ColorMatrix matrix from outer product

Syntax Type outerProduct(const Typel& a, const Typel& b)
Meaning | r;; = a; * b;‘f

Typel,2 | ColorVector, LatticeColorVector

Type ColorMatrix, LatticeColorMatrix

Left multiplication by gauge matrix

Syntax Type operator*(const Typel& a, const Type& b)

Meaning | r =a x b

Typel ColorMatrix, LatticeColorMatrix

Type constant, Complex, ColorMatrix, ColorVector,
SpinVector, DiracPropagator, and similar lattice variants

Right multiplication by gauge matrix

Syntax Type operator*(const Typek a, const Typel& b)

Meaning | r =ax*b

Typel ColorMatrix, LatticeColorMatrix

Type ColorMatrix, SpinMatrix, DiracPropagator, and similar lattice variants

10.7 Boolean and Bit Operations

Comparisons
Syntax Type2 op(const Typek a, const Typel& b)
Meaning | 7 = aopb or r = op(a, b)
op <, > 1= <K= >= ==
Typel Integer, Real, RealD, and similar lattice variants
Type?2 Boolean or LatticeBoolean (result is lattice if any arg is lattice)

Elementary binary operations on integers

Syntax Type2 op(const Typek a, const Typel& b)
Meaning | 7 = aopb or r = op(a, b)
op <<, >> & (and), | (or), ~ (xor), mod, max, min

Elementary binary operations on reals

Syntax Type op(const Typel& a, const Typel& b)
Meaning | 7 = aopb or r = op(a, b)

op mod, max, min

Type Real, RealD, and similar lattice variants

o1

Boolean Operations

Syntax Type op(const Type& a, const Type& b)
Meaning | r = aopb

op | (or), & (and), ~ (xor)

Type Boolean, LatticeBoolean

Syntax Type op(const Type& a)
Meaning | = nota

op I (not)
Type Boolean, LatticeBoolean
Copymask

Syntax | void copymask(const Type2& r, const Typel& a, const Typel& b)
Meaning | r = b if a is true
Type All numeric types

10.8 Reductions

Global reductions sum over all lattice sites in the subset specified by the left hand
side of the assignment.

Norms

Syntax | Real norm2(Type&k a)
Meaning | r = Y |a/?
Type All numeric types

Inner products

Syntax Complex innerProduct(Type& a, const Typek Db)
Meaning | r = Y af - b
Type All numeric types

Global sums

Syntax | Type sum(const Lattice Typek a)
Meaning | r =3 a
Type All numeric non-lattice scalar types

02

10.9 GGlobal comparisons

Find the maximum or minimum of a quantity across the lattice. These operations do

not have subset variants.

Syntax | Type globalMax(const Lattice Type&k a)
Meaning | r = mazaicea(x)

Type LatticeRealF, LatticeRealD

Syntax | Type globalMin(const LatticeType&k a)
Meaning | 7 = minaicea()

Type LatticeRealF, LatticeRealD

10.10 Fills

Coordinate function fills

Syntax | LatticelInt Layout::latticeCoordinate(int d)
Meaning | r = f(d) for direction 4.
Purpose | Return the lattice coordinates in direction d

The call Layout: :latticeCoordinate(d) returns an integer lattice field with a value
on each site equal to the integer value of the dth space-time coordinate on that site.

Constant fills

Syntax Lattice Type operator=(Lattice Type& r, const Type&k a)
Meaning | r = a for all sites
Type All non-lattice objects
Example | Real a = 2.0;
LatticeReal r = a;

Constant (or lattice global) fills are always defined for lattice scalar objects broad-
casting to all lattice sites. These are broadcasts of a lattice scalar type to a conforming
lattice type.

NOTE, one can not fill a LatticeColorVector with a Real.

Syntax | Lattice Type operator=(Lattice Type&k r, const Type&k a)
Meaning | r = diag(a, a,...) (constant a)
Type Complex, ColorMatrix, SpinMatrix
Example | Real a = 2.0;
LatticeColorMatrix r = a;

Only sets the diagonal part of a field to a constant a times the identity.

This fill can only be used on primitive types that are scalars or matrices. E.g.,
it can not be used for a vector field since there is no meaning of diagonal. NOTE,
a zero cannot be distinguished from a constant like 1. To initialize to zero the zero
argument must be used.

23

Zero fills

Syntax Type operator=(Type&k r, const Zero& zero)
Meaning | r =0

Type All numeric types

Example | LatticeDiracFermion r = zero;

This is the only way to fill a vector field with a constant (like zero).

Uniform random number fills

Syntax | void random(Type& r)
Meaning | r random, uniform on [0, 1]
Type All floating types

Gaussian random number fills

Syntax | void gaussian(Type& r)
Meaning | r normal Gaussian
Type All floating types

Seeding the random number generator

Syntax | void RNG: :setrn(const Seed& a)
Meaning | Initialize the random number generator with seed state a

For details see the discussion of the corresponding scalar function random.h.

Extracting the random number generator seed

Syntax | void RNG: :savern(Seed& r)
Meaning | Extract the random number generator into seed state r

For details see the discussion of the corresponding scalar function random.h.

o4

