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Organization

 Introduction
 Multi-Core Processors based SMP

 Hardware and Software Environment
 QMT (QCD Multi-Threading)

 Memory System
 Cache Coherence Protocol

 Barrier Algorithms
 Centralized and Queue-based

 Analysis of the Barrier Algorithms
 Performance of the Barrier Algorithms
 OpenMP and QMT



  

Why Multi-core Processors

 Traditional Design
 High clock frequency

 Deep pipeline
 Pipeline interruption is expensive

 Cache misses, branch mis-predication
 Larger gap between memory and CPU

 ILP (Instruction Level Parallelism)
 Challenge to find enough parallel instructions

 Underutilized
 Superscalar processors have multiple executing engines

 Hardware look for parallelism in large instruction window 
(expensive and complex)

 Compilers
 Most processors can’t find enough work 

  peak IPC is 6, average IPC is 1.5!



  

Multi-core Processors

 CMT (Chip Multi-Threading)
 Exploit higher level of parallelism
 Execute multiple threads on multi-cores within a 

single CPU
 Cache-coherence circuitry operates at higher clock 

speed
 Signals stay inside the chip

 Each core is relative simple
 Smaller instruction window

 Smaller die area
 Consume less power

 Sequential programs may perform poorly
 Cache contention/cache thrashing on shared cache 

systems



  

Motivation

 Linux clusters based on commodity multi-core SMP 
nodes
 Multi-threading data parallel scientific applications
 Fork-join style parallel programming paradigm

 Barrier algorithm performance
 Multi-threading Strategy

 OpenMP
 Hand written threading library (QMT)

 Optimal barrier algorithm

Master

Fork Join

Time



  

OpenMP

 Portable, Shared Memory Multi-
Processing API
 Compiler Directives and Runtime Library
 C/C++, Fortran 77/90
 Unix/Linux, Windows
 Intel c/c++, gcc-4.x
 Implementation on top of native threads

 Fork-join Parallel Programming 
Model



  

OpenMP

 Compiler Directives (C/C++)
#pragma omp parallel
{

thread_exec ();  /* all threads execute the code 
*/

} /* all threads join master thread */
#pragma omp critical
#pragma omp section
#pragma omp barrier
#pragma omp parallel reduction(+:result)

 Run time library
 omp_set_num_threads, omp_get_thread_num



  

QMT (QCD Multi-Threading)

 QMT: Local developed multi-
threading library
LQCD applications: data parallel
Fork-join programming model
Very light weight lock
Optimal barrier algorithm

typedef void (*qmt_userfunc_t) (void *usrarg, int thid);
extern int qmt_init (void);
extern int qmt_finalize (void);
extern int qmt_pexec (qmt_userfunc_t func, void* arg);
extern int  qmt_thread_id (void);
extern int qmt_num_threads(void);



  

Motivation

 Memory architecture of a SMP using 
multi-core processors
 Shared BUS (Intel Xeons)
 ccNUMA (AMD Opterons)
 Cache Coherence Protocol

 Memory architecture impact on the 
performance of barrier algorithms
 Memory Organization
 Cache coherence protocol



  

Hardware and Software Environment

 Dell Power Edge 1850
 Dual Intel Xeon 5150 2.66 GHz
 Shared Bus Memory System

 Dell Power Edge SC1435
 Dual AMD Opteron 2220SE 2.8 GHz
 ccNUMA Memory System

 Fedora Core 5 Linux x86_64
 Kernel 2.6.17 (with PAPI support)
 gcc 4.1 and Intel icc 9.1



  

Multi-Core Architecture
 L1 Cache

 32 KB Data, 32 KB Instruction
 L2 Cache

 4MB Shared among 2 cores
 256 bit width
 10.6 GB/s bandwidth to cores

 FB-DDR2
 Increased Latency
 memory disambiguation 

allows load ahead store 
instructions

 Executions
 Pipeline length 14; 24 bytes 

Fetch width; 96 reorder buffers
 3 128-bit SSE Units; One SSE 

instruction/cycle

 L1 Cache
 64 KB Data, 64 KB Instruction

 L2 Cache
 1 MB dedicated
 128 bit width
 6.4 GB/s bandwidth to cores

 NUMA (DDR2)
 Increased latency to access 

the other memory
 Memory affinity is important

 Executions
 Pipeline length 12; 16 bytes 

Fetch width; 72 reorder 
buffers

 2 128-bit SSE Units; One SSE 
instruction = two 64-bit 
instructions.

Intel Woodcrest Xeon AMD Opteron



  

Configurations of Test Machines
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Hardware and Software Environment

 EPCC
 Micro-benchmark measuring thread synchronization 

overhead
 PAPI (Performance Programming Interface API)

 Performance Event Counter Registers available on Intel 
Xeon and AMD Opteron Processors

 Linux kernel modules (perfctr) can read performance 
event counts from the registers

 Vast available performance metrics
 PAPI_L2_TCM (L2 Cache Misses)
 PAPI_FP_INS  (Total Floating Point Ins)

 Machine specific performance metrics
 SI_PREFETCH_ATTEMPT (Opteron)
 NB_MC_PAGE_MISS       (Opteron)
 SIMD_Int_128_Ret         (Xeon)



  

Intel Xeon Memory Architecture
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AMD Opteron Memory Architecture
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Cache Coherence with Write Back 
Caches
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Memory
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Cache Coherence Protocol

 Intel utilizes MESI protocol:
 M: Modified
 E: Exclusive
 S: Shared
 I: Invalid

 A write miss results in a 
read-exclusive bus 
transaction
 Write to a shared or an 

invalid block
 Invalidate other copies of 

the block 
 Modified block has to be 

written back to memory 
when another cache read 
the invalid block

 AMD utilizes MOESI protocol:
 M: Modified
 E: Exclusive
 S: Shared
 I: Invalid
 O: Owner (Most Recent Copy of 

Data)
 One cache can hold a block of 

data in the Owner state and the 
others are in shared state

 The owner of a cache block 
updates other caches reading 
the block

 The copy in the main memory 
can be stale

 Write modified cache back to 
memory can be avoided



  

MESI Cache Coherence Protocol
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MOESI Cache Coherence Protocol
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Cache to cache transfers are carried out by SRI or HPT



  

Memory and Cache Access Latency
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Software Barrier

Barrier call

Threads

Barrier time

First comes

Last comes

gather release Last leaves



  

Centralized Barrier Algorithm

int flag=atomic_get(&release);
int count=atomic_int_dec(&counter);
if (count == 0) {
   atomic_int_set (&counter,num_threads);
   atomic_int_inc (&release);
}
else spin_until (flag != release)

P1 P2 P3 P4

counter
Memory contention
To the counter



  

Queue-based Barrier Algorithm
typedef struct qmt_cflag {
   int volatile c_flag;
   int c_pad[CACHE_LINE_SIZE – 1];
}qmt_cflag_t;
typedef struct qmt_barrier {
   int volatile release;
   char br_pad[CACHE_LINE_SIZE – 1];
   qmt_flag_t flags[1];
}qmt_barrier_t;
/* Master Thread */
for (i = 1; i < num_threads; i++); {
   while (barrier->flags[i].cflag] == 0) ;
   barrier->flags[i].cflag=0;
}
atomic_int_inc(&barrier->release);
/* Thread i */
int rkey = barrier->release;
barrier->flags[i].cflag = -1;
While (rkey == barrier->release);

P1 P1 P1 P1

Eliminate some memory contention



  

Analysis of the Barrier Algorithms 
under MESI Protocol

1.2516204

1.3611153

1.00N/AN/A2

RatioQueuebasedCentralizedThreads

5n mem r/w 5n -4 mem r/w



  

Analysis of the Barrier Algorithms 
under MOESI Protocol

1.229114

1.33683

1.67352

RatioQueue basedCentralizedThreads

3n-1 cache access 3n-3 cache access



  

Performance of the Barrier Algorithms

Something else
besides memory
contention



  

Performance Monitoring using PAPI

 PAPI can be used to read performance 
event counter on both Xeon and Opteron 
processors

 Intel
 BUS_TRANS_MEM

 Monitor all memory transactions
 AMD

 DC_COPYBACK_I
 Equivalent to the number of cache 

transactions
 NB_HT_BUS(x)_DATA

 The number of HyperTransport data 
transactions



  

Memory/Cache Transactions of the 
Barrier Algorithms



  

Multi-Threading Strategy

 OpenMP
 Standard
 C, C++, Fortran
 Compiler Dependent

 Hand-written pthread Library
 Portable
 Complex
 Can be a better performer



  

OpenMP Performance from Different 
Compilers



  

QMT and OpenMP



  

Conclusions

 Multi-core processor based SMP 
clusters present new challenges

 Memory architecture influences the 
performance of barrier algorithms
 Memory contention
 Cache coherence protocol

 OpenMP is getting better
 Hand-written multi-threading libraries 

can perform even better


