

Multi-Threading Performance on
Commodity Multi-Core Processors

Jie Chen and William Watson III
Scientific Computing Group
Jefferson Lab
12000 Jefferson Ave.
Newport News, VA 23606

Organization

 Introduction
 Multi-Core Processors based SMP

 Hardware and Software Environment
 QMT (QCD Multi-Threading)

 Memory System
 Cache Coherence Protocol

 Barrier Algorithms
 Centralized and Queue-based

 Analysis of the Barrier Algorithms
 Performance of the Barrier Algorithms
 OpenMP and QMT

Why Multi-core Processors

 Traditional Design
 High clock frequency

 Deep pipeline
 Pipeline interruption is expensive

 Cache misses, branch mis-predication
 Larger gap between memory and CPU

 ILP (Instruction Level Parallelism)
 Challenge to find enough parallel instructions

 Underutilized
 Superscalar processors have multiple executing engines

 Hardware look for parallelism in large instruction window
(expensive and complex)

 Compilers
 Most processors can’t find enough work

 peak IPC is 6, average IPC is 1.5!

Multi-core Processors

 CMT (Chip Multi-Threading)
 Exploit higher level of parallelism
 Execute multiple threads on multi-cores within a

single CPU
 Cache-coherence circuitry operates at higher clock

speed
 Signals stay inside the chip

 Each core is relative simple
 Smaller instruction window

 Smaller die area
 Consume less power

 Sequential programs may perform poorly
 Cache contention/cache thrashing on shared cache

systems

Motivation

 Linux clusters based on commodity multi-core SMP
nodes
 Multi-threading data parallel scientific applications
 Fork-join style parallel programming paradigm

 Barrier algorithm performance
 Multi-threading Strategy

 OpenMP
 Hand written threading library (QMT)

 Optimal barrier algorithm

Master

Fork Join

Time

OpenMP

 Portable, Shared Memory Multi-
Processing API
 Compiler Directives and Runtime Library
 C/C++, Fortran 77/90
 Unix/Linux, Windows
 Intel c/c++, gcc-4.x
 Implementation on top of native threads

 Fork-join Parallel Programming
Model

OpenMP

 Compiler Directives (C/C++)
#pragma omp parallel
{

thread_exec (); /* all threads execute the code
*/

} /* all threads join master thread */
#pragma omp critical
#pragma omp section
#pragma omp barrier
#pragma omp parallel reduction(+:result)

 Run time library
 omp_set_num_threads, omp_get_thread_num

QMT (QCD Multi-Threading)

 QMT: Local developed multi-
threading library
LQCD applications: data parallel
Fork-join programming model
Very light weight lock
Optimal barrier algorithm

typedef void (*qmt_userfunc_t) (void *usrarg, int thid);
extern int qmt_init (void);
extern int qmt_finalize (void);
extern int qmt_pexec (qmt_userfunc_t func, void* arg);
extern int qmt_thread_id (void);
extern int qmt_num_threads(void);

Motivation

 Memory architecture of a SMP using
multi-core processors
 Shared BUS (Intel Xeons)
 ccNUMA (AMD Opterons)
 Cache Coherence Protocol

 Memory architecture impact on the
performance of barrier algorithms
 Memory Organization
 Cache coherence protocol

Hardware and Software Environment

 Dell Power Edge 1850
 Dual Intel Xeon 5150 2.66 GHz
 Shared Bus Memory System

 Dell Power Edge SC1435
 Dual AMD Opteron 2220SE 2.8 GHz
 ccNUMA Memory System

 Fedora Core 5 Linux x86_64
 Kernel 2.6.17 (with PAPI support)
 gcc 4.1 and Intel icc 9.1

Multi-Core Architecture
 L1 Cache

 32 KB Data, 32 KB Instruction
 L2 Cache

 4MB Shared among 2 cores
 256 bit width
 10.6 GB/s bandwidth to cores

 FB-DDR2
 Increased Latency
 memory disambiguation

allows load ahead store
instructions

 Executions
 Pipeline length 14; 24 bytes

Fetch width; 96 reorder buffers
 3 128-bit SSE Units; One SSE

instruction/cycle

 L1 Cache
 64 KB Data, 64 KB Instruction

 L2 Cache
 1 MB dedicated
 128 bit width
 6.4 GB/s bandwidth to cores

 NUMA (DDR2)
 Increased latency to access

the other memory
 Memory affinity is important

 Executions
 Pipeline length 12; 16 bytes

Fetch width; 72 reorder
buffers

 2 128-bit SSE Units; One SSE
instruction = two 64-bit
instructions.

Intel Woodcrest Xeon AMD Opteron

Configurations of Test Machines

4GB
ccNUMA

1MB
Private

64K Data
64K Instr

Two
2.8 GHz
Dual-Core

AMD

4GB
Shared
Bus

4MB
Shared

32K Data
32K Insr

Two
2.66 GHZ
Dual-Core

Intel

MemoryL2L1CPUs

Hardware and Software Environment

 EPCC
 Micro-benchmark measuring thread synchronization

overhead
 PAPI (Performance Programming Interface API)

 Performance Event Counter Registers available on Intel
Xeon and AMD Opteron Processors

 Linux kernel modules (perfctr) can read performance
event counts from the registers

 Vast available performance metrics
 PAPI_L2_TCM (L2 Cache Misses)
 PAPI_FP_INS (Total Floating Point Ins)

 Machine specific performance metrics
 SI_PREFETCH_ATTEMPT (Opteron)
 NB_MC_PAGE_MISS (Opteron)
 SIMD_Int_128_Ret (Xeon)

Intel Xeon Memory Architecture

L2 Cache

CPU

L1 Cache L1 Cache

Processor 1

Core 1 Core 2

CPU

L2 Cache

CPU

L1 Cache L1 Cache

Processor 2

Core 1 Core 2

CPU

System Bus System Memory

AMD Opteron Memory Architecture

Core 1 Core 2

L2 Cache

L1 Cache L1 Cache

L2 Cache

SRQ SRQ

Cross Bar

MCT

H
T

H
T

H
T

Local Memory

Core 1 Core 2

L2 Cache

L1 Cache L1 Cache

L2 Cache

SRQ SRQ

Cross Bar

MCT

H
T

H
T

H
T

Local Memory

Cache Coherence with Write Back
Caches

L1 Cache

Memory

Core 1

L1 Cache

Core 3

a = 7

L2 Cache L2 Cachea=7 a=7a=28 a=?

Cache Coherence Protocol

 Intel utilizes MESI protocol:
 M: Modified
 E: Exclusive
 S: Shared
 I: Invalid

 A write miss results in a
read-exclusive bus
transaction
 Write to a shared or an

invalid block
 Invalidate other copies of

the block
 Modified block has to be

written back to memory
when another cache read
the invalid block

 AMD utilizes MOESI protocol:
 M: Modified
 E: Exclusive
 S: Shared
 I: Invalid
 O: Owner (Most Recent Copy of

Data)
 One cache can hold a block of

data in the Owner state and the
others are in shared state

 The owner of a cache block
updates other caches reading
the block

 The copy in the main memory
can be stale

 Write modified cache back to
memory can be avoided

MESI Cache Coherence Protocol

L1 Cache

Core 1

L1 Cache

Core 3

L2 Cache L2 Cache

Memory a=7

a=7 a=7a=9

a=9

a=9

I M

Accessing System Memory is Expensive

MOESI Cache Coherence Protocol

L1 Cache

Core 1

L1 Cache

Core 3

L2 Cache L2 Cache

Memory a=7

a=7 a=7a=9 a=9

I O

Cache to cache transfers are carried out by SRI or HPT

Memory and Cache Access Latency

11983.5AMD

18755Intel

Different CPU (ns)Same CPU (ns)

1734.31.07AMD

1505.291.13Intel

Memory (ns)L2 (ns)L1 (ns)

Random Memory Access Latency

Cache-to-cache Transfer Latency

Software Barrier

Barrier call

Threads

Barrier time

First comes

Last comes

gather release Last leaves

Centralized Barrier Algorithm

int flag=atomic_get(&release);
int count=atomic_int_dec(&counter);
if (count == 0) {
 atomic_int_set (&counter,num_threads);
 atomic_int_inc (&release);
}
else spin_until (flag != release)

P1 P2 P3 P4

counter
Memory contention
To the counter

Queue-based Barrier Algorithm
typedef struct qmt_cflag {
 int volatile c_flag;
 int c_pad[CACHE_LINE_SIZE – 1];
}qmt_cflag_t;
typedef struct qmt_barrier {
 int volatile release;
 char br_pad[CACHE_LINE_SIZE – 1];
 qmt_flag_t flags[1];
}qmt_barrier_t;
/* Master Thread */
for (i = 1; i < num_threads; i++); {
 while (barrier->flags[i].cflag] == 0) ;
 barrier->flags[i].cflag=0;
}
atomic_int_inc(&barrier->release);
/* Thread i */
int rkey = barrier->release;
barrier->flags[i].cflag = -1;
While (rkey == barrier->release);

P1 P1 P1 P1

Eliminate some memory contention

Analysis of the Barrier Algorithms
under MESI Protocol

1.2516204

1.3611153

1.00N/AN/A2

RatioQueuebasedCentralizedThreads

5n mem r/w 5n -4 mem r/w

Analysis of the Barrier Algorithms
under MOESI Protocol

1.229114

1.33683

1.67352

RatioQueue basedCentralizedThreads

3n-1 cache access 3n-3 cache access

Performance of the Barrier Algorithms

Something else
besides memory
contention

Performance Monitoring using PAPI

 PAPI can be used to read performance
event counter on both Xeon and Opteron
processors

 Intel
 BUS_TRANS_MEM

 Monitor all memory transactions
 AMD

 DC_COPYBACK_I
 Equivalent to the number of cache

transactions
 NB_HT_BUS(x)_DATA

 The number of HyperTransport data
transactions

Memory/Cache Transactions of the
Barrier Algorithms

Multi-Threading Strategy

 OpenMP
 Standard
 C, C++, Fortran
 Compiler Dependent

 Hand-written pthread Library
 Portable
 Complex
 Can be a better performer

OpenMP Performance from Different
Compilers

QMT and OpenMP

Conclusions

 Multi-core processor based SMP
clusters present new challenges

 Memory architecture influences the
performance of barrier algorithms
 Memory contention
 Cache coherence protocol

 OpenMP is getting better
 Hand-written multi-threading libraries

can perform even better

