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Why Multi-core Processors

 Traditional Design
 High clock frequency

 Deep pipeline
 Pipeline interruption is expensive

 Cache misses, branch mis-predication
 Larger gap between memory and CPU

 ILP (Instruction Level Parallelism)
 Challenge to find enough parallel instructions

 Underutilized
 Superscalar processors have multiple executing engines

 Hardware look for parallelism in large instruction window 
(expensive and complex)

 Compilers
 Most processors can’t find enough work 

  peak IPC is 6, average IPC is 1.5!



  

Multi-core Processors

 CMT (Chip Multi-Threading)
 Exploit higher level of parallelism
 Execute multiple threads on multi-cores within a 

single CPU
 Cache-coherence circuitry operates at higher clock 

speed
 Signals stay inside the chip

 Each core is relative simple
 Smaller instruction window

 Smaller die area
 Consume less power

 Sequential programs may perform poorly
 Cache contention/cache thrashing on shared cache 

systems



  

Motivation

 Linux clusters based on commodity multi-core SMP 
nodes
 Multi-threading data parallel scientific applications
 Fork-join style parallel programming paradigm

 Barrier algorithm performance
 Multi-threading Strategy

 OpenMP
 Hand written threading library (QMT)

 Optimal barrier algorithm

Master

Fork Join

Time



  

OpenMP

 Portable, Shared Memory Multi-
Processing API
 Compiler Directives and Runtime Library
 C/C++, Fortran 77/90
 Unix/Linux, Windows
 Intel c/c++, gcc-4.x
 Implementation on top of native threads

 Fork-join Parallel Programming 
Model



  

OpenMP

 Compiler Directives (C/C++)
#pragma omp parallel
{

thread_exec ();  /* all threads execute the code 
*/

} /* all threads join master thread */
#pragma omp critical
#pragma omp section
#pragma omp barrier
#pragma omp parallel reduction(+:result)

 Run time library
 omp_set_num_threads, omp_get_thread_num



  

QMT (QCD Multi-Threading)

 QMT: Local developed multi-
threading library
LQCD applications: data parallel
Fork-join programming model
Very light weight lock
Optimal barrier algorithm

typedef void (*qmt_userfunc_t) (void *usrarg, int thid);
extern int qmt_init (void);
extern int qmt_finalize (void);
extern int qmt_pexec (qmt_userfunc_t func, void* arg);
extern int  qmt_thread_id (void);
extern int qmt_num_threads(void);



  

Motivation

 Memory architecture of a SMP using 
multi-core processors
 Shared BUS (Intel Xeons)
 ccNUMA (AMD Opterons)
 Cache Coherence Protocol

 Memory architecture impact on the 
performance of barrier algorithms
 Memory Organization
 Cache coherence protocol



  

Hardware and Software Environment

 Dell Power Edge 1850
 Dual Intel Xeon 5150 2.66 GHz
 Shared Bus Memory System

 Dell Power Edge SC1435
 Dual AMD Opteron 2220SE 2.8 GHz
 ccNUMA Memory System

 Fedora Core 5 Linux x86_64
 Kernel 2.6.17 (with PAPI support)
 gcc 4.1 and Intel icc 9.1



  

Multi-Core Architecture
 L1 Cache

 32 KB Data, 32 KB Instruction
 L2 Cache

 4MB Shared among 2 cores
 256 bit width
 10.6 GB/s bandwidth to cores

 FB-DDR2
 Increased Latency
 memory disambiguation 

allows load ahead store 
instructions

 Executions
 Pipeline length 14; 24 bytes 

Fetch width; 96 reorder buffers
 3 128-bit SSE Units; One SSE 

instruction/cycle

 L1 Cache
 64 KB Data, 64 KB Instruction

 L2 Cache
 1 MB dedicated
 128 bit width
 6.4 GB/s bandwidth to cores

 NUMA (DDR2)
 Increased latency to access 

the other memory
 Memory affinity is important

 Executions
 Pipeline length 12; 16 bytes 

Fetch width; 72 reorder 
buffers

 2 128-bit SSE Units; One SSE 
instruction = two 64-bit 
instructions.

Intel Woodcrest Xeon AMD Opteron



  

Configurations of Test Machines
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Hardware and Software Environment

 EPCC
 Micro-benchmark measuring thread synchronization 

overhead
 PAPI (Performance Programming Interface API)

 Performance Event Counter Registers available on Intel 
Xeon and AMD Opteron Processors

 Linux kernel modules (perfctr) can read performance 
event counts from the registers

 Vast available performance metrics
 PAPI_L2_TCM (L2 Cache Misses)
 PAPI_FP_INS  (Total Floating Point Ins)

 Machine specific performance metrics
 SI_PREFETCH_ATTEMPT (Opteron)
 NB_MC_PAGE_MISS       (Opteron)
 SIMD_Int_128_Ret         (Xeon)



  

Intel Xeon Memory Architecture
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AMD Opteron Memory Architecture
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Cache Coherence with Write Back 
Caches

L1 Cache

Memory

Core 1

L1 Cache

Core 3

a = 7
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Cache Coherence Protocol

 Intel utilizes MESI protocol:
 M: Modified
 E: Exclusive
 S: Shared
 I: Invalid

 A write miss results in a 
read-exclusive bus 
transaction
 Write to a shared or an 

invalid block
 Invalidate other copies of 

the block 
 Modified block has to be 

written back to memory 
when another cache read 
the invalid block

 AMD utilizes MOESI protocol:
 M: Modified
 E: Exclusive
 S: Shared
 I: Invalid
 O: Owner (Most Recent Copy of 

Data)
 One cache can hold a block of 

data in the Owner state and the 
others are in shared state

 The owner of a cache block 
updates other caches reading 
the block

 The copy in the main memory 
can be stale

 Write modified cache back to 
memory can be avoided



  

MESI Cache Coherence Protocol
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MOESI Cache Coherence Protocol
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Memory and Cache Access Latency
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18755Intel

Different CPU (ns)Same CPU (ns)

1734.31.07AMD

1505.291.13Intel

Memory (ns)L2 (ns)L1 (ns)

Random Memory Access Latency

Cache-to-cache Transfer Latency



  

Software Barrier

Barrier call

Threads

Barrier time

First comes

Last comes

gather release Last leaves



  

Centralized Barrier Algorithm

int flag=atomic_get(&release);
int count=atomic_int_dec(&counter);
if (count == 0) {
   atomic_int_set (&counter,num_threads);
   atomic_int_inc (&release);
}
else spin_until (flag != release)

P1 P2 P3 P4

counter
Memory contention
To the counter



  

Queue-based Barrier Algorithm
typedef struct qmt_cflag {
   int volatile c_flag;
   int c_pad[CACHE_LINE_SIZE – 1];
}qmt_cflag_t;
typedef struct qmt_barrier {
   int volatile release;
   char br_pad[CACHE_LINE_SIZE – 1];
   qmt_flag_t flags[1];
}qmt_barrier_t;
/* Master Thread */
for (i = 1; i < num_threads; i++); {
   while (barrier->flags[i].cflag] == 0) ;
   barrier->flags[i].cflag=0;
}
atomic_int_inc(&barrier->release);
/* Thread i */
int rkey = barrier->release;
barrier->flags[i].cflag = -1;
While (rkey == barrier->release);

P1 P1 P1 P1

Eliminate some memory contention



  

Analysis of the Barrier Algorithms 
under MESI Protocol

1.2516204

1.3611153

1.00N/AN/A2

RatioQueuebasedCentralizedThreads

5n mem r/w 5n -4 mem r/w



  

Analysis of the Barrier Algorithms 
under MOESI Protocol

1.229114

1.33683

1.67352

RatioQueue basedCentralizedThreads

3n-1 cache access 3n-3 cache access



  

Performance of the Barrier Algorithms

Something else
besides memory
contention



  

Performance Monitoring using PAPI

 PAPI can be used to read performance 
event counter on both Xeon and Opteron 
processors

 Intel
 BUS_TRANS_MEM

 Monitor all memory transactions
 AMD

 DC_COPYBACK_I
 Equivalent to the number of cache 

transactions
 NB_HT_BUS(x)_DATA

 The number of HyperTransport data 
transactions



  

Memory/Cache Transactions of the 
Barrier Algorithms



  

Multi-Threading Strategy

 OpenMP
 Standard
 C, C++, Fortran
 Compiler Dependent

 Hand-written pthread Library
 Portable
 Complex
 Can be a better performer



  

OpenMP Performance from Different 
Compilers



  

QMT and OpenMP



  

Conclusions

 Multi-core processor based SMP 
clusters present new challenges

 Memory architecture influences the 
performance of barrier algorithms
 Memory contention
 Cache coherence protocol

 OpenMP is getting better
 Hand-written multi-threading libraries 

can perform even better


