

Multi-Threading Performance on
Commodity Multi-Core Processors

Jie Chen and William Watson III
Scientific Computing Group
Jefferson Lab
12000 Jefferson Ave.
Newport News, VA 23606

Organization

 Introduction
 Multi-Core Processors based SMP

 Hardware and Software Environment
 QMT (QCD Multi-Threading)

 Memory System
 Cache Coherence Protocol

 Barrier Algorithms
 Centralized and Queue-based

 Analysis of the Barrier Algorithms
 Performance of the Barrier Algorithms
 OpenMP and QMT

Why Multi-core Processors

 Traditional Design
 High clock frequency

 Deep pipeline
 Pipeline interruption is expensive

 Cache misses, branch mis-predication
 Larger gap between memory and CPU

 ILP (Instruction Level Parallelism)
 Challenge to find enough parallel instructions

 Underutilized
 Superscalar processors have multiple executing engines

 Hardware look for parallelism in large instruction window
(expensive and complex)

 Compilers
 Most processors can’t find enough work

 peak IPC is 6, average IPC is 1.5!

Multi-core Processors

 CMT (Chip Multi-Threading)
 Exploit higher level of parallelism
 Execute multiple threads on multi-cores within a

single CPU
 Cache-coherence circuitry operates at higher clock

speed
 Signals stay inside the chip

 Each core is relative simple
 Smaller instruction window

 Smaller die area
 Consume less power

 Sequential programs may perform poorly
 Cache contention/cache thrashing on shared cache

systems

Motivation

 Linux clusters based on commodity multi-core SMP
nodes
 Multi-threading data parallel scientific applications
 Fork-join style parallel programming paradigm

 Barrier algorithm performance
 Multi-threading Strategy

 OpenMP
 Hand written threading library (QMT)

 Optimal barrier algorithm

Master

Fork Join

Time

OpenMP

 Portable, Shared Memory Multi-
Processing API
 Compiler Directives and Runtime Library
 C/C++, Fortran 77/90
 Unix/Linux, Windows
 Intel c/c++, gcc-4.x
 Implementation on top of native threads

 Fork-join Parallel Programming
Model

OpenMP

 Compiler Directives (C/C++)
#pragma omp parallel
{

thread_exec (); /* all threads execute the code
*/

} /* all threads join master thread */
#pragma omp critical
#pragma omp section
#pragma omp barrier
#pragma omp parallel reduction(+:result)

 Run time library
 omp_set_num_threads, omp_get_thread_num

QMT (QCD Multi-Threading)

 QMT: Local developed multi-
threading library
LQCD applications: data parallel
Fork-join programming model
Very light weight lock
Optimal barrier algorithm

typedef void (*qmt_userfunc_t) (void *usrarg, int thid);
extern int qmt_init (void);
extern int qmt_finalize (void);
extern int qmt_pexec (qmt_userfunc_t func, void* arg);
extern int qmt_thread_id (void);
extern int qmt_num_threads(void);

Motivation

 Memory architecture of a SMP using
multi-core processors
 Shared BUS (Intel Xeons)
 ccNUMA (AMD Opterons)
 Cache Coherence Protocol

 Memory architecture impact on the
performance of barrier algorithms
 Memory Organization
 Cache coherence protocol

Hardware and Software Environment

 Dell Power Edge 1850
 Dual Intel Xeon 5150 2.66 GHz
 Shared Bus Memory System

 Dell Power Edge SC1435
 Dual AMD Opteron 2220SE 2.8 GHz
 ccNUMA Memory System

 Fedora Core 5 Linux x86_64
 Kernel 2.6.17 (with PAPI support)
 gcc 4.1 and Intel icc 9.1

Multi-Core Architecture
 L1 Cache

 32 KB Data, 32 KB Instruction
 L2 Cache

 4MB Shared among 2 cores
 256 bit width
 10.6 GB/s bandwidth to cores

 FB-DDR2
 Increased Latency
 memory disambiguation

allows load ahead store
instructions

 Executions
 Pipeline length 14; 24 bytes

Fetch width; 96 reorder buffers
 3 128-bit SSE Units; One SSE

instruction/cycle

 L1 Cache
 64 KB Data, 64 KB Instruction

 L2 Cache
 1 MB dedicated
 128 bit width
 6.4 GB/s bandwidth to cores

 NUMA (DDR2)
 Increased latency to access

the other memory
 Memory affinity is important

 Executions
 Pipeline length 12; 16 bytes

Fetch width; 72 reorder
buffers

 2 128-bit SSE Units; One SSE
instruction = two 64-bit
instructions.

Intel Woodcrest Xeon AMD Opteron

Configurations of Test Machines

4GB
ccNUMA

1MB
Private

64K Data
64K Instr

Two
2.8 GHz
Dual-Core

AMD

4GB
Shared
Bus

4MB
Shared

32K Data
32K Insr

Two
2.66 GHZ
Dual-Core

Intel

MemoryL2L1CPUs

Hardware and Software Environment

 EPCC
 Micro-benchmark measuring thread synchronization

overhead
 PAPI (Performance Programming Interface API)

 Performance Event Counter Registers available on Intel
Xeon and AMD Opteron Processors

 Linux kernel modules (perfctr) can read performance
event counts from the registers

 Vast available performance metrics
 PAPI_L2_TCM (L2 Cache Misses)
 PAPI_FP_INS (Total Floating Point Ins)

 Machine specific performance metrics
 SI_PREFETCH_ATTEMPT (Opteron)
 NB_MC_PAGE_MISS (Opteron)
 SIMD_Int_128_Ret (Xeon)

Intel Xeon Memory Architecture

L2 Cache

CPU

L1 Cache L1 Cache

Processor 1

Core 1 Core 2

CPU

L2 Cache

CPU

L1 Cache L1 Cache

Processor 2

Core 1 Core 2

CPU

System Bus System Memory

AMD Opteron Memory Architecture

Core 1 Core 2

L2 Cache

L1 Cache L1 Cache

L2 Cache

SRQ SRQ

Cross Bar

MCT

H
T

H
T

H
T

Local Memory

Core 1 Core 2

L2 Cache

L1 Cache L1 Cache

L2 Cache

SRQ SRQ

Cross Bar

MCT

H
T

H
T

H
T

Local Memory

Cache Coherence with Write Back
Caches

L1 Cache

Memory

Core 1

L1 Cache

Core 3

a = 7

L2 Cache L2 Cachea=7 a=7a=28 a=?

Cache Coherence Protocol

 Intel utilizes MESI protocol:
 M: Modified
 E: Exclusive
 S: Shared
 I: Invalid

 A write miss results in a
read-exclusive bus
transaction
 Write to a shared or an

invalid block
 Invalidate other copies of

the block
 Modified block has to be

written back to memory
when another cache read
the invalid block

 AMD utilizes MOESI protocol:
 M: Modified
 E: Exclusive
 S: Shared
 I: Invalid
 O: Owner (Most Recent Copy of

Data)
 One cache can hold a block of

data in the Owner state and the
others are in shared state

 The owner of a cache block
updates other caches reading
the block

 The copy in the main memory
can be stale

 Write modified cache back to
memory can be avoided

MESI Cache Coherence Protocol

L1 Cache

Core 1

L1 Cache

Core 3

L2 Cache L2 Cache

Memory a=7

a=7 a=7a=9

a=9

a=9

I M

Accessing System Memory is Expensive

MOESI Cache Coherence Protocol

L1 Cache

Core 1

L1 Cache

Core 3

L2 Cache L2 Cache

Memory a=7

a=7 a=7a=9 a=9

I O

Cache to cache transfers are carried out by SRI or HPT

Memory and Cache Access Latency

11983.5AMD

18755Intel

Different CPU (ns)Same CPU (ns)

1734.31.07AMD

1505.291.13Intel

Memory (ns)L2 (ns)L1 (ns)

Random Memory Access Latency

Cache-to-cache Transfer Latency

Software Barrier

Barrier call

Threads

Barrier time

First comes

Last comes

gather release Last leaves

Centralized Barrier Algorithm

int flag=atomic_get(&release);
int count=atomic_int_dec(&counter);
if (count == 0) {
 atomic_int_set (&counter,num_threads);
 atomic_int_inc (&release);
}
else spin_until (flag != release)

P1 P2 P3 P4

counter
Memory contention
To the counter

Queue-based Barrier Algorithm
typedef struct qmt_cflag {
 int volatile c_flag;
 int c_pad[CACHE_LINE_SIZE – 1];
}qmt_cflag_t;
typedef struct qmt_barrier {
 int volatile release;
 char br_pad[CACHE_LINE_SIZE – 1];
 qmt_flag_t flags[1];
}qmt_barrier_t;
/* Master Thread */
for (i = 1; i < num_threads; i++); {
 while (barrier->flags[i].cflag] == 0) ;
 barrier->flags[i].cflag=0;
}
atomic_int_inc(&barrier->release);
/* Thread i */
int rkey = barrier->release;
barrier->flags[i].cflag = -1;
While (rkey == barrier->release);

P1 P1 P1 P1

Eliminate some memory contention

Analysis of the Barrier Algorithms
under MESI Protocol

1.2516204

1.3611153

1.00N/AN/A2

RatioQueuebasedCentralizedThreads

5n mem r/w 5n -4 mem r/w

Analysis of the Barrier Algorithms
under MOESI Protocol

1.229114

1.33683

1.67352

RatioQueue basedCentralizedThreads

3n-1 cache access 3n-3 cache access

Performance of the Barrier Algorithms

Something else
besides memory
contention

Performance Monitoring using PAPI

 PAPI can be used to read performance
event counter on both Xeon and Opteron
processors

 Intel
 BUS_TRANS_MEM

 Monitor all memory transactions
 AMD

 DC_COPYBACK_I
 Equivalent to the number of cache

transactions
 NB_HT_BUS(x)_DATA

 The number of HyperTransport data
transactions

Memory/Cache Transactions of the
Barrier Algorithms

Multi-Threading Strategy

 OpenMP
 Standard
 C, C++, Fortran
 Compiler Dependent

 Hand-written pthread Library
 Portable
 Complex
 Can be a better performer

OpenMP Performance from Different
Compilers

QMT and OpenMP

Conclusions

 Multi-core processor based SMP
clusters present new challenges

 Memory architecture influences the
performance of barrier algorithms
 Memory contention
 Cache coherence protocol

 OpenMP is getting better
 Hand-written multi-threading libraries

can perform even better

