
Software Barrier Performance on Dual Quad-Core Opterons

Jie Chen and William Watson III
Scientific Computing Group

Jefferson National Lab
Newport News, Virginia 23606

USA
Email: {chen,watson}@jlab.org

Abstract

Multi-core processors based SMP servers have become
building blocks for Linux clusters in recent years because
they can deliver better performance for multi-threaded pro-
grams through on-chip multi-threading. However, a rela-
tive slow software barrier can hinder the performance of
a data-parallel scientific application on a multi-core sys-
tem. In this paper we study the performance of different
software barrier algorithms on a server based on newly in-
troduced AMD quad-core Opteron processors. We study
how the memory architecture and the cache coherence pro-
tocol of the system influence the performance of barrier al-
gorithms. We present an optimized barrier algorithm de-
rived from the queue-based barrier algorithm. We find that
the optimized barrier algorithm achieves speedup of 1.77
over the original queue-based algorithm. In addition, it has
speedup of 2.39 over the software barrier generated by the
Intel OpenMP compiler.

1. Introduction

Recently, multi-core processors based on the chip multi-
threading/processing (CMT/CMP) [12] architecture, which
uses multiple single-thread processor cores in a single CPU
and executes multiple threads in parallel across the mul-
tiple cores, appear to dominate both the high-end and the
mainstream computing markets. Because a multi-core pro-
cessor offers better performance-to-cost ratios relativeto a
traditional multi-processor solution such as the Symmetric
MultiProccssing (SMP) systems, computers based on multi-
core processors, e.g., Intel quad-core Xeons [15] and AMD
quad-core Opterons [6], become building blocks for high
performance computing Linux clusters. For a system with a
single multi-core processor, it is indeed a slim implementa-
tion of an SMP node on a chip. For a system with multiple

multi-core processors organized in the SMP fashion, it be-
haves as a traditional SMP machine, where the number of
processors is the number of cores.

Scientific applications can benefit from multi-core pro-
cessors, where code can be executed in multiple threads
each of which runs on a dedicated processing core. Es-
pecially applications of data parallelism, where multiple
threads execute the same code on different sets of data,
can improve their performance dramatically relative to their
single threaded versions. Applications of this type usu-
ally utilize the fork-join programming model found in any
OpenMP [10] application. However, the choice of a barrier
algorithm is critical to the performance of any application
of such type since each join action leads to executions of
barrier synchronization by all threads. A barrier synchro-
nization for a group of threads means that any thread must
stop at this point and cannot proceed until all other threads
reach this barrier.

Past research has focused on how to improve barrier per-
formance by either reducing memory contention introduced
by accessing shared flags within a barrier or by reducing the
critical path of a barrier [3] [8]. However, there is a lack of
studies on how the memory subsystem and the cache co-
herence protocol of a system influence the performance of
barrier algorithms. In addition, most well known barrier
algorithms target to large SMP machines. This paper stud-
ies the performance of a few known software barrier algo-
rithms on an SMP server consisting of two AMD quad-core
Opteron processors to shed some light on the above issues,
and introduces an optimized barrier algorithm for the server.

The paper is organized as follows. Section 2 describes
the software and hardware environment where our perfor-
mance evaluations are carried out. Section 3 overviews
the memory organization and the cache coherence proto-
col utilized by our test machine. Section 4 presents a few
known barrier algorithms. Section 5 analyzes the perfor-
mance of the algorithms based on memory/cache transac-
tions and introduces an optimized barrier algorithm. Sec-

1-4244-0328-6/06/$20.00c©2006 IEEE.

tion 6 compares the performance of the algorithms along
with an OpenMP compiler generated barrier. Section 7 con-
cludes.

2. Hardware and Software Environment

Our test machine is equipped with two AMD quad-core
Opteron 2347 processors [1] running at 1.9 GHz. Each pro-
cessor has its own memory controller shared by four cores
which can access the memory and caches on the other pro-
cessor through coherent HyperTransport [5] links. Table 1
lists some of the important information of the test machine.

Table 1: Information of the test machine

CPUs L1 L2 L3 Memory
Two 64K Data 512 KB 2MB 4x1GB

Quad-Core 64K Instr Private Shared

The test machine is running Fedora Core 7 Linux x8664
distribution with a Linux kernel of 2.6.23. One compiler
is utilized: the Intel icc (64bit) version 10.0.023 support-
ing OpenMP. The synchronization overhead introduced by
the OpenMP directives is measured through the EPCC mi-
crobenchmark [2]. On the other hand, the synchronization
overhead induced by software barriers are collected through
a slightly modified EPCC microbenchmark program. All
benchmark and test programs are compiled with -O3 opti-
mization flag. During execution of any benchmark and test
program, each thread is bound to a particular core to avoid
the overhead of thread migration.

3. Memory Architecture

In a commodity multi-core small SMP system, the mem-
ory system usually is organized in one of the following two
ways: a shared bus architecture where each core accesses
the memory uniformly through a common bus; a cache
coherent Non-Uniform Memory Architecture (ccNUMA)
where each core has different access speeds to its local and
remote memory through different paths and has channels
to maintain cache coherence with the other cores. Systems
with dual quad-core Opteron processors opt the ccNUMA
architecture by deploying an integrated memory controller
and local memory to each processor which is directly con-
nected to the other processors by a Coherent HyperTrans-
port link. Each core communicates with the other cores
through a system request interface (SRQ) [1], which in turn
talks to a non-blocking crossbar. The crossbar is then con-
nected to the memory controller and to the various Hyper-
Transport links. Fig. 1 illustrates the internal architecture
of an Opteron processor.

In a multi-core SMP system such as our test machine,
the memory system is organized in a hierarchical way in-
cluding fast multi-level of caches and relatively slow mem-
ory. The quad-core Opteron processors use three levels of
caches to accelerate data processing: private L1 cache, pri-
vate L2 cache and shared L3 cache. The L1 cache is a
write-allocate and writeback [14] cache and uses a least-
recently-used replacement policy. The L1 cache behaves as
a traditional lower level cache in the sense that L1 loads a
cache block from the memory subsystem directly upon a
read/write miss. The L2 cache is a private cache and is an
exclusive cache architecture. The L2 cache only contains
victim or copy-back cache blocks that are to be written to
the memory subsystem as a result of a conflict miss. The
L3 cache is a victim cache and is dynamically shared be-
tween all four cores to promote fast cache sharing among
the cores.

DRAM

XBAR

C0

C1

C2

C3

Coherent

H
yperT

ransport
Link

Link

Link
HyperTranport

MCT

H
yperT

ranport
C

oherent

S
R

Q

Fig. 1: Internal structure of an Opteron processor

A cache coherence protocol is a mechanism ensure that
all cache copies remain consistent when the contents of that
memory location are modified. The quad-core Opteron pro-
cessors utilize a protocol called MOESI [13], named from
five states of the protocol: Invalid, Exclusive, Shared, Mod-
ified and Owned. The MOESI protocol has one more state
than another popular cache coherence protocol MESI [11]
deployed by the Intel Xeon multi-core processors. The extra
state, which is the Owned state, is to reduce the number of
memory write backs during the MESI protocol operations.
These memory write backs happen when a modified cache
block has to be written back to the memory subsystem in or-
der for other shared caches to load the correct value. Under
the MOESI protocol, however, a cache block in the Owned
state holds the most recent/correct copy of the data and the
copy in the main memory can be stale. Only one cache can
hold a block of data in the Owned state, all others must hold
the data in the Shared state. The owner of a cache block is
responsible to update other caches that try to read/write the
block. This avoids the need to write a modified cache back
to the main memory. Data flagged as in the Owned state in

the cache of one core can be delivered directly to another
core on the different CPU via a CPU-to-CPU HyperTrans-
port link or to another core on the same CPU via the SRQ.

Traditionally, a simple barrier can be implemented by
having each thread increment/decrement one or more bar-
rier variables. Hence the performance of accessing these
variables is crucial to the performance of a barrier. Ta-
ble 2 shows the random access latency to each level of the
memory system on the test machine using the LMbench
[7] benchmark. It is clear that any barrier implementation
should avoid cache conflicts that could evict shared barrier
variables to the lower level caches.

Table 2: Random memory access latency
L1(ns) L2(ns) L3(ns) Memory(ns)
1.57 8.03 26.07 107.3

Cache to cache transfer latency is also important to
multi-threaded applications on a multi-core SMP machine.
The AMD quad-core Opteron processors have two ways to
achieve this: the SRQ channels for transferring data among
caches on different cores within one CPU, and the Hyper-
Transport channels for delivering cache data from one core
to another across CPU boundaries. It is obvious that an SRQ
channel transfers data faster than a HyperTransport channel.
Executing a simple C program that uses two threads to send
and receive cache data back and forth between two cores on
the test machine shows an SRQ cache-to-cache latency of
105.4ns and a HyperTransport cache-to-cache latency of
138.7ns. That is the difference of 33.3ns in cache trans-
fer latency between an SRQ channel and a HyperTransport
channel.

4. Barrier Algorithms

A software barrier synchronizes a number of cooperating
threads that repeatedly perform some work and then wait
until all threads are ready to move to the next computing
phase. Fig. 2 illustrates the timing information for a single
barrier operation/synchronization. The total elapsed time of
a single barrier operation is the time difference between the
time of the first thread arriving at the barrier and the time
of the last thread leaving the barrier. The total time can be
further divided into two phases: the gather phase is the time
period during which each thread signals its arrival at the
barrier; the release phase denotes the time interval during
which each thread is notified the completion of the barrier
operation and is allowed to resume execution. During a bar-
rier operation, a thread can perform no other computation
except signaling its arrival at the barrier and being signaled
the end of the barrier operation. Therefore, to improve the
performance of a barrier algorithm is to reduce the total time
of the barrier operation.

There are a few popular barrier algorithms used over the
years, such as the centralized barrier, the combining tree
barrier, the tournament barrier [8] and so on. The central-
ized barrier works well for a small number of threads but
does not scale well for a large number of threads because
all threads contend for the same set of variables. The com-
bining tree and the tournament barrier reduce the above con-
tention and work best for a large SMP system but not par-
ticularly well for a small SMP system [4]. Recently, the
queue-based barrier algorithm [3] has gained popularity be-
cause it reduces the contention, performs well for small and
large SMP systems and is easy to implement.

Barrier Time

Gather Release Last leaves

Last comes

First comes

Fig. 2: Timing for a single barrier

The implementation of the centralized barrier algorithm
(given below) uses one shared counter variable and one
shared release flag. During the gather phase of a centralized
barrier, each thread reduces the counter variable by one and
waits on any change of the release variable. The barrier en-
ters the release phase when the counter variable is reduced
to zero by a thread. The thread increases the release variable
by one, which signals the other waiting threads to proceed.

int flag=atomicint get(&release);
int count=atomicint dec(&counter);
if (count==0){

atomic int set(&counter, numthreads);
atomic int inc(&release);

}
elsespin until (flag 6= release)

To avoid contention for the shared counter variable,
the queue-based barrier algorithm (given below) picks one
thread as the coordinating-thread or the master-thread and
allocates a global array of flags. During the gather phase,
each thread participating in the barrier operation signalsits
arrival at the barrier by increasing its flag variable by one in
the flag array, and then spins on a shared release flag. It is
the master-thread’s responsibility to check the above signal
flags to find out whether the other threads have arrived at the
barrier. The barrier enters the release phase once all threads
have arrived at the barrier. The master thread then adds one
to the release flag for which non-master threads are wait-
ing. Therefore the release phase of the queue-based barrier
algorithm is identical to the centralized barrier algorithm.

typedef struct cflag{
int volatile c flag;
/∗ each flag on a different cache line∗/

int c pad[CACHELINE SIZE-1];
}cflag t;
typedef struct qbarrier{

int volatile release;
char br pad[CACHELINE SIZE-1];
cflag t flags[1];

}qbarriert;
/∗ Master Thread∗/
int localflags[numthreads];
for (i=1;i<num threads;i++){

while (barrier→flags[i].cflag==localflag[i])
;

localflags[i]=barrier→flags[i].cflag;
}
atomic inc(&barrier→release);
/∗ Thread i∗/
int rkey=barrier→release;
++(barrier→flags[i].cflag);
while(rkey==barrier→release);

5. Analysis of Barrier Algorithms

To find out how the memory architecture of the quad-
core Opteron processors effects the performance of a bar-
rier algorithm, we analyze memory and cache transactions
of two barrier algorithms under the MOESI cache coher-
ence protocol. We then introduce a slightly modified queue-
based algorithm that could perform better.

The performance of a barrier is clearly influenced by
the number of accesses to the main memory or the num-
ber of cache-to-cache transfers and whether the mem-
ory/cache transactions can be carried out in parallel or can
be pipelined. The difference between the centralized al-
gorithm and the queue-based algorithm lies in the gather
phase of each algorithm. The release phase is the same.
For the simplicity of analyzing of these algorithms, let us
assume that there aren processing cores. Furthermore, let
us use RdX to denote the READEXCLUSIVE bus trans-
action generated by a cache write miss, and Rd to denote
the READ bus transaction. Finally, we assume that a thread
running on a core has the same id as the core id.

5.1. The Centralized Barrier Algorithm

Under the MOESI protocol deployed on the quad-core
Opteron processors, memory transactions could be avoided
if there are no cache eviction to the memory subsystem. Let
us assume that one core initially has updated values of the
counter variable and the release variable, and that the other
caches are all invalidated. Fig. 3 demonstrates the bus and
the cache transactions for thread 2 arriving at a centralized
barrier, where the numbers inside the small circles denote
the sequence of the transactions. Now thread 1 is the owner

of the counter variable and it updates the cache of thread 2
which has generated the RdX bus transaction upon trying
to write to the counter variable. Thread 1 invalidates its
own cache block after the update is carried out via a cache-
to-cache transfer channel. Thread 2 then becomes the new
owner of the counter variable right after it decrements the
variable. When thread 1 later checks the counter variable,
thread 2 updates the cache of thread 1 immediately without
any memory transaction. The above discussion applies to
all the threads. There is no more cache-to-cache transaction
when the last thread sets the counter variable to be the same
as the number of threads because the last thread is already
the owner of the counter variable. Hence there is a total
of 2n cache-to-cache transactions during the gather phase
of the barrier. It is easy to see that there aren − 1 cache
updates of the release flag from one core to the other cores
in the release phase. Therefore, the total number of cache-
to-cache transactions is2n + n − 1 = 3n − 1 during a
centralized barrier operation. Worst of all, most of the above
transactions can not be carried out in parallel because of
the serialization of the RdX transactions on the same cache
block of the counter variable. This leads to performance
degradation of the barrier algorithm. The synchronization
time of a centralized barrier forn threads is clearly isO(n).

Counter

P1 P2 P3 P4

1 2
2

2
3

4

5

Cache Transfer Cache InvalidationBus Transaction

RdX
Rd

Fig. 3: Bus and cache transactions during the
gather phase of a centralized barrier

5.2. The Queue-based Barrier Algorithm

Similar to the above discussions for the centralized bar-
rier algorithm under MOESI protocol, there could be no
memory transactions during the synchronization of a queue-
based barrier. Initially, the master thread is the owner of all
signal flags. Fig. 4 presents a snapshot for thread 2 arriving
at the barrier. When thread 2 tries to update its signaling
flag, the master thread updates the cache of thread 2 and
invalidates its own copy. Therefore, thread 2 becomes the
new owner of the cache block of its own signal flag right
after it increases the value of the flag. Thread 2 later up-
dates its signal flag in the global flag array when the master

thread checks whether the other threads have arrived. Hence
there are two cache transactions for each of then − 1 non-
master threads. The total number of cache-to-cache trans-
actions during the synchronization of a queue-based barrier
is 2(n − 1) + (n − 1) = 3n − 3, where the lastn − 1 is
the contribution from the release phase of the barrier which
behaves the same as a centralized barrier during the release
phase.

P1 P2 P3 P4
2

3

5

Cache Transfer Cache InvalidationBus Transaction

1 2 3 4

4 1

RdX

Rd

Fig. 4: Bus and cache transactions during the
gather phase of a queue-based barrier

The number of cache transactions of a queue-based bar-
rier is not much smaller than that of a centralized bar-
rier. However, the2(n − 1) cache transactions during the
gather phase of a queue-based barrier can be carried out
effectively in parallel because each thread updates its flag
variable independently. Therefore, the effective number of
cache transactions during the gather phase forn threads
is reduced fromO(n) to a constant, i.e.,O(1). During
the release phase, however, the master thread has to send
out n − 1 cache invalidations to invalidaten − 1 remote
copies of the release flag, to processn − 1 Rd bus requests
from n − 1 cores, and to transportn − 1 cache updates to
n − 1 cores. It is difficult to pipeline these bus transac-
tions and cache transfers because of the read contention for
the release variable and the extreme short latencies of the
SRQ/HyperTransport channels on the test machine. There-
fore the total time complexity of the queue-base algorithm
cannot beO(1). Nonetheless, the queue-based barrier al-
gorithm should perform much better than the centralized
barrier algorithm does because it hasO(1) time complexity
during gather phase and it performs the same as the central-
ized barrier algorithm does during the release phase.

5.3. Modified Queue-based Barrier Algorithm

To relieve the read contention for the shared release flag
in the original queue-based algorithm, a modified algorithm
based on the suggestion of using separate signal flags [9]
is given below. The data structures and variables used in

the following code segment are the same as in the original
queue-based algorithm.

/∗ Master Thread∗/
for (i=1;i<num threads;i++){

while (barrier→flags[i].cflag==localflag[i])
;

}
for (i=1;i<num threads;i++){

++(barrier→flags[i].cflag);
localflags[i]=barrier→flags[i].cflag;

}
/∗ Thread i∗/
int key = barrier→flags[i].cflag + 1;
++(barrier→flags[i].cflag);
while (key == barrier→flags[i].cflag);

The modified algorithm uses the same array of flags to
signal the arrival of each thread at a barrier and to release
each thread from the barrier. This is different from the sug-
gestion [3] of using a separate array of flags as the releasing
flags. A separate release array could cause cache conflict
misses and hence could degrade the performance. Fig. 5
demonstrates the bus and cache transactions during the re-
lease phase of the modified algorithm. When the master
thread increases the value of the flag for thread 2, it invali-
dates the cache copy inside thread 2 and becomes the owner
again of the flag. When thread 2 checks the value of its flag,
the master thread updates the cache copy inside thread 2
upon receiving the corresponding Rd bus transaction. There
is only one cache transaction for thread 2 during the release
phase. The total number of cache transactions isn − 1. A
modified queue-based barrier generates the same number of
cache transactions as an original queue-based barrier during
the release phase.

P1 P2 P3 P4

Cache Transfer Cache InvalidationBus Transaction

1 2 3 4

Rd
1

2

3

Fig. 5: Bus and cache transactions during the
release phase of a modified queue-based barrier

Thesen − 1 cache transactions/updates in the release
phase could be pipelined because the updates are all in-
dependent. In addition, the quad-core Opteron processors

utilize a dedicated long store queue called LS2 inside the
Load-Store Unit (LSU) [1] to facilitate the write pipeline.
Hence the performance of the modified queue-based barrier
algorithm should be better than that of the original queue-
based algorithm.

6. Performance of the Barrier Algorithms

To evaluate performance, we use the synchronization
overhead introduced by a barrier algorithm as the metric
of the barrier algorithm. The overhead values of these bar-
rier algorithms are collected using the modified EPCC mi-
crobenchmark program. For the purpose of comparison, we
use the EPCC microbenchmark program to obtain the over-
head values of the barrier generated from the Intel OpenMP
compiler. Fig. 6 shows the overhead values in terms of CPU
cycles for three barrier algorithms and the OpenMP barrier.

2 3 4 5 6 7 8
Number of Threads

0

500

1000

1500

2000

2500

3000

3500

4000

B
ar

rie
r

O
ve

rh
ea

d
(C

P
U

 C
yc

le
s)

OpenMP Barrier
Centralized Barrier
Queu-based Barrier
Modified Queue-based Barrier

Fig. 6: Performance of barrier algorithms

Both queue-based barrier algorithms noticeably outper-
form the centralized barrier algorithm for two to eight
threads. This confirms that the write memory contention
for the shared counter variable inside a centralized bar-
rier causes serialization of cache/bus transactions which
lengthen the barrier synchronization. The modified queue-
based algorithm performs almost the same as the original
version for two to four threads because an original queue-
based barrier has less severity of the read contention for
the release flag for the small number of threads when fast
cache-to-cache transfers happen among cores within a pro-
cessor. However, the modified queue-based barrier algo-
rithm performs noticeably better than the original version
for five to eight threads due to its capability of pipelining
cache/bus transactions related to the array of release flags
in the algorithm. The obvious ridges in most of the plots
in the figure from four to five threads stem from the longer
latency of a cache-to-cache transfer through a HyperTrans-
port channel than through an SRQ channel. Finally the

speedups of all algorithms against the OpenMP barrier im-
plementation are shown in Table 3, where C, Q and MQ
stand for the centralized, the queue-based and the modified
queue-based algorithms, respectively.

Table 3: Speedup over OpenMP barrier
2 3 4 5 6 7 8

C 0.77 1.01 1.17 1.10 0.84 0.92 1.10
Q 1.54 1.92 1.65 1.37 1.39 1.21 1.34

MQ 2.08 1.72 1.74 2.36 1.44 1.56 2.39

It is easy to see that the two queue-based barrier algo-
rithms have substantial speedups over the OpenMP barrier
across the given numbers of threads. More importantly, our
modified queue-based barrier algorithm has speedup of 1.77
over the original version in the case of eight threads.

7. Conclusions

Efficient barrier synchronization is critical to data par-
allel scientific calculations running on SMP systems us-
ing multi-core processors. This paper first analyzes two
known barrier algorithms: the centralized algorithm and
the queue-based algorithm, and identifies sources of per-
formance overhead on a system equipped with two newly
introduced AMD quad-core Opteron processors. The sig-
nificant sources of the overhead come from read/write con-
tention for shared variables so that bus/cache transactions
either cannot be carried out in parallel or cannot be fully
pipelined. To reduce the performance overhead, this paper
introduces a modified algorithm derived from the queue-
based algorithm to reduce the read contention during the
release phase of a barrier operation.

On our test system, all barrier algorithms perform bet-
ter than the barrier generated by the Intel OpenMP com-
piler. The centralized barrier algorithm is known to work
well for a small number of processing cores but it contains
both write and read contention for shared variables. Our
studies show that the queue-based algorithm indeed outper-
forms the centralized algorithm for two to eight threads be-
cause it reduces the write memory contention found in the
centralized algorithm. The modified queue-based algorithm
performs the same as the original version for two to four
threads, but it performs consistently better than the original
version for five to eight threads. Especially, the modified al-
gorithm achieves speedup of 1.77 over the original version
in the case of eight threads. In addition, the modified algo-
rithm has speedup of 2.39 over the barrier generated by the
Intel OpenMP compiler.

As a part of an ongoing software development effort at
Jefferson Lab to simplify multi-threading physics calcula-
tions on SMP systems based on multi-core processors, the
C implementation of the barrier algorithms is freely avail-
able at ftp://ftp.jlab.org/hpc/qmt.tar.gz.

8. Acknowledgment

This work is supported by Jefferson Science Associates,
LLC under U.S. DOE Contract DE-AC05-06OR23177.

References

[1] AMD: Software Optimization Guide for the AMD
Family 10h Processors, 2007.

[2] J. M. Bull and D. O’Neill, A microbenchmark Suite
for OpenMP 2.0, InProceedings of the European
Workshop on OpenMP, 2001.

[3] L. Cheng and J.B. Carter, Fast Barriers for Scalable
ccNUMA Systems, InProceedings of the Interna-
tional Conference on Parallel Processing (ICPP’05),
241-250, 2005.

[4] D. E. Culler, J. P. Singh and A. Gupta, Parallel Com-
puter Architecture: A Hardware and Software Ap-
proach, Morgan Kaufmann, 1999.

[5] HyperTransport Consortium: Low La-
tency Chip-to-Chip and beyond Interconnect,
http://www.hypertransport.org/ .

[6] C. N. Keltcher, K. J. McGrath, A. Ahmed and P. Con-
way, The AMD Opteron Processor for Multiprocessor
Servers,IEEE Micro, 23(2), 66-76.

[7] M. Larry and C. Staelin, lmbench: Portable Tools for
Performance Analysis, InProceedings of the USENIX
Technical Conference, 1996.

[8] J. Mellor-Crummey and M. Scott, Algorithms for
Scalable Synchronization on Shared-Memory Multi-
processors,ACM Trans. on Computer Systems, 21-65,
1991.

[9] J. Mellor-Crummey and M. Scott, Synchronization
without Contention, InProceedings of the Symposium
of Architectural Support for Programming Languages
and Operating Systems, 269-278, 1991.

[10] OpenMP Application Program Interface, version 2.5,
public draft, 2004

[11] M. Papamarcos and J. Patel, A Low Overhead Coher-
ence Solution for Multiprocessors with Private Cache
Memories, InProceedings of the International Sym-
posium on Computer Architecture, 238-354, 1984.

[12] L. Spracklen, S. G. Abraham, Chip Multithreading:
Opportunities and Challenges, InProceedings of the
International Symposium on High-Performance Com-
puter Architecture, 248-252, 2005.

[13] P. Sweazey and A. J. Smith, A Class of Compati-
ble Cache Consistency Protocols and Their Support
by the IEEE Futurebus, InProceedings of the Inter-
national Symposium on Computer Architecture, 414-
423, 1986.

[14] J. Hennessy and D. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann, 1996.

[15] Dual-Core Intel Xeon Processor 5000 Sequence.
http://www.intel.com/products/processor/xeon5000/
documentation.htm

